ccDice: A Topology-Aware Dice Score Based on Connected Components | SpringerLink
Skip to main content

ccDice: A Topology-Aware Dice Score Based on Connected Components

  • Conference paper
  • First Online:
Topology- and Graph-Informed Imaging Informatics (TGI3 2024)

Abstract

Image segmentation is a complex task that aims to simultaneously satisfy various quality criteria. In this context, topology is being increasingly considered. Guaranteeing correct topological properties is indeed crucial for objects presenting challenging shapes. Designing topology-aware metrics is then relevant, both for assessing the quality of segmentation results and for designing losses involved in learning procedures. In this article, we introduce ccDice (connected component Dice), a topological metric that generalises the popular Dice score. By contrast to Dice, that acts at the scale of pixels, ccDice acts at the scale of connected components of the compared objects, leading to a topological assessment of their relative structure and embedding. ccDice is a simple, explainable, normalized and low-computational topological metric. We provide a formal definition of ccDice, an algorithmic scheme for computing it, and we assess its behaviour by comparison to other usual topological metrics. Code is available on GitHub: https://github.com/PierreRouge/ccDice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/PierreRouge/ccDice.

References

  1. Bauer, U., Lesnick, M.: Induced matchings and the algebraic stability of persistence barcodes. J. Comput. Geom. 6, 162–191 (2015)

    MathSciNet  Google Scholar 

  2. Byrne, N., et al.: A persistent homology-based topological loss for CNN-based multiclass segmentation of CMR. IEEE Trans. Med. Imaging 42, 3–14 (2022)

    Article  Google Scholar 

  3. Carlinet, E., Géraud, T.: A comparative review of component tree computation algorithms. IEEE Trans. Image Process. 23, 3885–3895 (2014)

    Article  MathSciNet  Google Scholar 

  4. Clough, J.R., et al.: A topological loss function for deep-learning based image segmentation using persistent homology. IEEE Trans. Pattern Anal. 44, 8766–8778 (2020)

    Article  Google Scholar 

  5. Couprie, M., Bertrand, G.: New characterizations of simple points in 2D, 3D, and 4D discrete spaces. IEEE Trans. Pattern Anal. 31, 637–648 (2009)

    Article  Google Scholar 

  6. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26, 297–302 (1945)

    Article  Google Scholar 

  7. Edelsbrunner, H., Harrer, J.: Persistent homology - a survey. Contemp. Math. 453, 257–282 (2008)

    Article  MathSciNet  Google Scholar 

  8. Fraz, M.M., et al.: An ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans. Bio. Med. Eng. 59, 2538–2548 (2012)

    Article  Google Scholar 

  9. Gupta, S., et al.: Topology-aware uncertainty for image segmentation. In: NeurIPS, Procs. (2024)

    Google Scholar 

  10. Hu, X., et al.: Topology-preserving deep image segmentation. In: NeurIPS, Procs. (2019)

    Google Scholar 

  11. Hu, X., et al.: Topology-aware segmentation using discrete Morse theory. In: ICLR, Procs. (2021)

    Google Scholar 

  12. Kovalevsky, V.A.: Finite topology as applied to image analysis. Comput. Vision. Graph. 46, 141–161 (1989)

    Article  Google Scholar 

  13. Mazo, L., et al.: Paths, homotopy and reduction in digital images. Acta Appl. Math. 113, 167–193 (2011)

    Article  MathSciNet  Google Scholar 

  14. Mazo, L., et al.: Digital imaging: a unified topological framework. J. Math. Imaging Vis. 44, 19–37 (2012)

    Article  MathSciNet  Google Scholar 

  15. Passat, N., Mendes Forte, J., Kenmochi, Y.: Morphological hierarchies: a unifying framework with new trees. J. Math. Imaging Vis. 65, 718–753 (2023)

    Article  MathSciNet  Google Scholar 

  16. Perret, B., Cousty, J.: Component tree loss function: Definition and optimization. In: DGMM, Procs., pp. 248–260 (2022)

    Google Scholar 

  17. Rosenfeld, A.: Adjacency in digital pictures. Inform. Control 26, 24–33 (1974)

    Article  MathSciNet  Google Scholar 

  18. Rosenfeld, A.: Digital topology. Am. Math. Mon. 86, 621–630 (1979)

    Article  MathSciNet  Google Scholar 

  19. Saha, P.K., Strand, R., Borgefors, G.: Digital topology and geometry in medical imaging: a survey. IEEE Trans. Med. Imaging 34, 1940–1964 (2015)

    Article  Google Scholar 

  20. Salembier, P., Oliveras, A., Garrido, L.: Anti-extensive connected operators for image and sequence processing. IEEE Trans. Image Process. 7, 555–570 (1998)

    Article  Google Scholar 

  21. Shit, S., et al.: clDice–A novel topology-preserving loss function for tubular structure segmentation. In: CVPR, Procs., pp. 16560–16569 (2021)

    Google Scholar 

  22. Stucki, N., et al.: Topologically faithful image segmentation via induced matching of persistence barcodes. In: ICML, Procs., pp. 32698–32727 (2023)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Agence Nationale de la Recherche (Grants ANR-20-CE45-0011, ANR-22-CE45-0034, ANR-22-CE45-0018 and ANR-23-CE45-0015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Rougé .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 55 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rougé, P., Merveille, O., Passat, N. (2025). ccDice: A Topology-Aware Dice Score Based on Connected Components. In: Chen, C., Singh, Y., Hu, X. (eds) Topology- and Graph-Informed Imaging Informatics. TGI3 2024. Lecture Notes in Computer Science, vol 15239. Springer, Cham. https://doi.org/10.1007/978-3-031-73967-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73967-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73966-8

  • Online ISBN: 978-3-031-73967-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics