P-Count: Persistence-Based Counting of White Matter Hyperintensities in Brain MRI | SpringerLink
Skip to main content

P-Count: Persistence-Based Counting of White Matter Hyperintensities in Brain MRI

  • Conference paper
  • First Online:
Topology- and Graph-Informed Imaging Informatics (TGI3 2024)

Abstract

White matter hyperintensities (WMH) are a hallmark of cerebrovascular disease and multiple sclerosis. Automated WMH segmentation methods enable quantitative analysis via estimation of total lesion load, spatial distribution of lesions, and number of lesions (i.e., number of connected components after thresholding), all of which are correlated with patient outcomes. While the two former measures can generally be estimated robustly, the number of lesions is highly sensitive to noise and segmentation mistakes – even when small connected components are eroded or disregarded. In this article, we present P-Count, an algebraic WMH counting tool based on persistent homology that accounts for the topological features of WM lesions in a robust manner. Using computational geometry, P-Count takes the persistence of connected components into consideration, effectively filtering out the noisy WMH positives, resulting in a more accurate and robust count of true lesions. We validated P-Count on the ISBI2015 longitudinal lesion segmentation dataset, where it produces significantly more accurate results than direct thresholding. Our code will be made publicly available upon acceptance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 5719
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alber, J., Alladi, S., Bae, H.J., et al.: White matter hyperintensities in vascular contributions to cognitive impairment and dementia (VCID): knowledge gaps and opportunities. Alzheimer’s Dementia: Transl. Res. Clin. Interv. (2019)

    Google Scholar 

  2. Barkhof, F., Filippi, M., Waesberghe, V., et al.: Interobserver agreement for diagnostic MRI criteria in suspected multiple sclerosis. Neuroradiology (1999)

    Google Scholar 

  3. Barkhof, F., Scheltens, P.: Imaging of white matter lesions. Cerebrovasc. Dis. (2002)

    Google Scholar 

  4. Billot, B., Cerri, S., Leemput, V., et al.: Joint segmentation of multiple sclerosis lesions and brain anatomy in MRI scans of any contrast and resolution with CNNs. In: ISBI (2021)

    Google Scholar 

  5. Bozsik, B., Tóth, E., Polyák, I., et al.: Reproducibility of lesion count in various subregions on MRI scans in multiple sclerosis. Front. Neurol. (2022)

    Google Scholar 

  6. Brosch, T., Tang, L.Y., Yoo, Y., et al.: Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. TMI (2016)

    Google Scholar 

  7. Calabrese, M., Poretto, V., Favaretto, A., et al.: Cortical lesion load associates with progression of disability in multiple sclerosis. Brain (2012)

    Google Scholar 

  8. Carass, A., Roy, S., Jog, A., et al.: Longitudinal multiple sclerosis lesion segmentation: resource and challenge. NeuroImage (2017)

    Google Scholar 

  9. Cerri, S., Puonti, O., Meier, D.S., et al.: A contrast-adaptive method for simultaneous whole-brain and lesion segmentation in multiple sclerosis. Neuroimage (2021)

    Google Scholar 

  10. Chazal, F., Guibas, L.J., Oudot, S.Y., et al.: Persistence-based clustering in Riemannian manifolds. J. ACM (2013)

    Google Scholar 

  11. Clough, J.R., Byrne, N., Oksuz, I., et al.: A topological loss function for deep-learning based image segmentation using persistent homology. TPAMI (2020)

    Google Scholar 

  12. Edelsbrunner, H., Harer, J., et al.: Persistent homology – a survey. Contemp. Math. (2008)

    Google Scholar 

  13. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. In: FOCS (2000)

    Google Scholar 

  14. Fazekas, F., Chawluk, J.B., Alavi, A., et al.: MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. Am. J. Neuroradiol. (1987)

    Google Scholar 

  15. Filippi, M., Preziosa, P., Banwell, B.L., et al.: Assessment of lesions on magnetic resonance imaging in multiple sclerosis: practical guidelines. Brain (2019)

    Google Scholar 

  16. Georgakis, M.K., Duering, M., Wardlaw, J.M., et al.: WMH and long-term outcomes in ischemic stroke: a systematic review and meta-analysis. Neurology (2019)

    Google Scholar 

  17. Gessert, N., Krüger, J., Opfer, R., et al.: Multiple sclerosis lesion activity segmentation with attention-guided two-path CNNs. Comput. Med. Imaging Graph. 84, 101772 (2020)

    Article  Google Scholar 

  18. Ghafoorian, M., Karssemeijer, N., Heskes, T., et al.: Location sensitive deep convolutional neural networks for segmentation of white matter hyperintensities. Sci. Rep. (2017)

    Google Scholar 

  19. Griffanti, L., Zamboni, G., Khan, A., et al.: BIANCA (Brain Intensity AbNormality Classification Algorithm): a new tool for automated segmentation of white matter hyperintensities. Neuroimage (2016)

    Google Scholar 

  20. Guerrero, R., Qin, C., Oktay, O., et al.: White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks. NeuroImage Clin. (2018)

    Google Scholar 

  21. Hu, X., Li, F., Samaras, D., et al.: Topology-preserving deep image segmentation. In: NeurIPS (2019)

    Google Scholar 

  22. Hu, X., Wang, Y., Fuxin, L., et al.: Topology-aware segmentation using discrete Morse theory. In: ICLR (2021)

    Google Scholar 

  23. Kervadec, H., Bouchtiba, J., Desrosiers, C., et al.: Boundary loss for highly unbalanced segmentation. In: MIDL (2019)

    Google Scholar 

  24. Krüger, J., Opfer, R., Gessert, N., et al.: Fully automated longitudinal segmentation of new or enlarged multiple sclerosis lesions using 3D convolutional neural networks. NeuroImage Clin. (2020)

    Google Scholar 

  25. Lassmann, H.: Multiple sclerosis pathology. Cold Spring Harb. Perspect. Med. (2018)

    Google Scholar 

  26. Li, H., Jiang, G., Zhang, J., et al.: Fully convolutional network ensembles for white matter hyperintensities segmentation in MR images. NeuroImage (2018)

    Google Scholar 

  27. Ma, Y., Zhang, C., Cabezas, M., et al.: Multiple sclerosis lesion analysis in brain magnetic resonance images: techniques and clinical applications. JBHI (2022)

    Google Scholar 

  28. Manjón, J.V., Coupé, P., Raniga, P., et al.: MRI white matter lesion segmentation using an ensemble of neural networks and overcomplete patch-based voting. Comput. Med. Imaging Graph. (2018)

    Google Scholar 

  29. Popescu, V., Agosta, F., Hulst, H.E., et al.: Brain atrophy and lesion load predict long term disability in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry (2013)

    Google Scholar 

  30. Schmidt, P.: Bayesian inference for structured additive regression models for large-scale problems with applications to medical imaging. Ph.D. thesis, LMU (2017)

    Google Scholar 

  31. Schmidt, P., Gaser, C., Arsic, M., et al.: An automated tool for detection of flair-hyperintense white-matter lesions in multiple sclerosis. Neuroimage (2012)

    Google Scholar 

  32. Shiee, N., Bazin, P.L., Ozturk, A., et al.: A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions. NeuroImage (2010)

    Google Scholar 

  33. Sudre, C.H., Cardoso, M.J., Bouvy, W.H., et al.: Bayesian model selection for pathological neuroimaging data applied to white matter lesion segmentation. TMI (2015)

    Google Scholar 

  34. Treaba, C.A., Granberg, T.E., Sormani, M.P., et al.: Longitudinal characterization of cortical lesion development and evolution in multiple sclerosis with 7.0-T MRI. Radiology (2019)

    Google Scholar 

  35. Uher, T., Vaneckova, M., Sobisek, L., et al.: Combining clinical and magnetic resonance imaging markers enhances prediction of 12-year disability in multiple sclerosis. Multiple Sclerosis J. (2017)

    Google Scholar 

  36. Vaidya, S., Chunduru, A., Muthuganapathy, R., et al.: Longitudinal multiple sclerosis lesion segmentation using 3D convolutional neural networks. In: Proceedings of the 2015 Longitudinal Multiple Sclerosis Lesion Segmentation Challenge (2015)

    Google Scholar 

  37. Van Leemput, K., Maes, F., Vandermeulen, D., et al.: Automated segmentation of multiple sclerosis lesions by model outlier detection. TMI (2001)

    Google Scholar 

  38. Vermeer, S.E., Hollander, M., van Dijk, E.J., et al.: Silent brain infarcts and white matter lesions increase stroke risk in the general population: the Rotterdam scan study. Stroke (2003)

    Google Scholar 

  39. Weiss, N., Rueckert, D., Rao, A.: Multiple sclerosis lesion segmentation using dictionary learning and sparse coding. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 735–742. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40811-3_92

    Chapter  Google Scholar 

  40. Wu, P., et al.: Optimal topological cycles and their application in cardiac trabeculae restoration. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 80–92. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_7

    Chapter  Google Scholar 

  41. Zipoli, V., Portaccio, E., Siracusa, G., et al.: Interobserver agreement on Poser’s and the new McDonald’s diagnostic criteria for multiple sclerosis. Multiple Sclerosis J. (2003)

    Google Scholar 

Download references

Acknowledgement

This research was primarily supported by NIH BRAIN grant 1UM1MH130981. Also supported by NIH grants 1RF1MH123195, 1R01AG070988, 1RF1AG080371. OP was supported by a grant from Lundbeckfonden (grant number R360-2021-395). ASA is a recipient of an American Heart Association Postdoctoral Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoling Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, X., Sorby-Adams, A., Barkhof, F., Taylor Kimberly, W., Puonti, O., Iglesias, J.E. (2025). P-Count: Persistence-Based Counting of White Matter Hyperintensities in Brain MRI. In: Chen, C., Singh, Y., Hu, X. (eds) Topology- and Graph-Informed Imaging Informatics. TGI3 2024. Lecture Notes in Computer Science, vol 15239. Springer, Cham. https://doi.org/10.1007/978-3-031-73967-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73967-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73966-8

  • Online ISBN: 978-3-031-73967-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics