Abstract
White matter hyperintensities (WMH) are a hallmark of cerebrovascular disease and multiple sclerosis. Automated WMH segmentation methods enable quantitative analysis via estimation of total lesion load, spatial distribution of lesions, and number of lesions (i.e., number of connected components after thresholding), all of which are correlated with patient outcomes. While the two former measures can generally be estimated robustly, the number of lesions is highly sensitive to noise and segmentation mistakes – even when small connected components are eroded or disregarded. In this article, we present P-Count, an algebraic WMH counting tool based on persistent homology that accounts for the topological features of WM lesions in a robust manner. Using computational geometry, P-Count takes the persistence of connected components into consideration, effectively filtering out the noisy WMH positives, resulting in a more accurate and robust count of true lesions. We validated P-Count on the ISBI2015 longitudinal lesion segmentation dataset, where it produces significantly more accurate results than direct thresholding. Our code will be made publicly available upon acceptance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alber, J., Alladi, S., Bae, H.J., et al.: White matter hyperintensities in vascular contributions to cognitive impairment and dementia (VCID): knowledge gaps and opportunities. Alzheimer’s Dementia: Transl. Res. Clin. Interv. (2019)
Barkhof, F., Filippi, M., Waesberghe, V., et al.: Interobserver agreement for diagnostic MRI criteria in suspected multiple sclerosis. Neuroradiology (1999)
Barkhof, F., Scheltens, P.: Imaging of white matter lesions. Cerebrovasc. Dis. (2002)
Billot, B., Cerri, S., Leemput, V., et al.: Joint segmentation of multiple sclerosis lesions and brain anatomy in MRI scans of any contrast and resolution with CNNs. In: ISBI (2021)
Bozsik, B., Tóth, E., Polyák, I., et al.: Reproducibility of lesion count in various subregions on MRI scans in multiple sclerosis. Front. Neurol. (2022)
Brosch, T., Tang, L.Y., Yoo, Y., et al.: Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. TMI (2016)
Calabrese, M., Poretto, V., Favaretto, A., et al.: Cortical lesion load associates with progression of disability in multiple sclerosis. Brain (2012)
Carass, A., Roy, S., Jog, A., et al.: Longitudinal multiple sclerosis lesion segmentation: resource and challenge. NeuroImage (2017)
Cerri, S., Puonti, O., Meier, D.S., et al.: A contrast-adaptive method for simultaneous whole-brain and lesion segmentation in multiple sclerosis. Neuroimage (2021)
Chazal, F., Guibas, L.J., Oudot, S.Y., et al.: Persistence-based clustering in Riemannian manifolds. J. ACM (2013)
Clough, J.R., Byrne, N., Oksuz, I., et al.: A topological loss function for deep-learning based image segmentation using persistent homology. TPAMI (2020)
Edelsbrunner, H., Harer, J., et al.: Persistent homology – a survey. Contemp. Math. (2008)
Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and simplification. In: FOCS (2000)
Fazekas, F., Chawluk, J.B., Alavi, A., et al.: MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. Am. J. Neuroradiol. (1987)
Filippi, M., Preziosa, P., Banwell, B.L., et al.: Assessment of lesions on magnetic resonance imaging in multiple sclerosis: practical guidelines. Brain (2019)
Georgakis, M.K., Duering, M., Wardlaw, J.M., et al.: WMH and long-term outcomes in ischemic stroke: a systematic review and meta-analysis. Neurology (2019)
Gessert, N., Krüger, J., Opfer, R., et al.: Multiple sclerosis lesion activity segmentation with attention-guided two-path CNNs. Comput. Med. Imaging Graph. 84, 101772 (2020)
Ghafoorian, M., Karssemeijer, N., Heskes, T., et al.: Location sensitive deep convolutional neural networks for segmentation of white matter hyperintensities. Sci. Rep. (2017)
Griffanti, L., Zamboni, G., Khan, A., et al.: BIANCA (Brain Intensity AbNormality Classification Algorithm): a new tool for automated segmentation of white matter hyperintensities. Neuroimage (2016)
Guerrero, R., Qin, C., Oktay, O., et al.: White matter hyperintensity and stroke lesion segmentation and differentiation using convolutional neural networks. NeuroImage Clin. (2018)
Hu, X., Li, F., Samaras, D., et al.: Topology-preserving deep image segmentation. In: NeurIPS (2019)
Hu, X., Wang, Y., Fuxin, L., et al.: Topology-aware segmentation using discrete Morse theory. In: ICLR (2021)
Kervadec, H., Bouchtiba, J., Desrosiers, C., et al.: Boundary loss for highly unbalanced segmentation. In: MIDL (2019)
Krüger, J., Opfer, R., Gessert, N., et al.: Fully automated longitudinal segmentation of new or enlarged multiple sclerosis lesions using 3D convolutional neural networks. NeuroImage Clin. (2020)
Lassmann, H.: Multiple sclerosis pathology. Cold Spring Harb. Perspect. Med. (2018)
Li, H., Jiang, G., Zhang, J., et al.: Fully convolutional network ensembles for white matter hyperintensities segmentation in MR images. NeuroImage (2018)
Ma, Y., Zhang, C., Cabezas, M., et al.: Multiple sclerosis lesion analysis in brain magnetic resonance images: techniques and clinical applications. JBHI (2022)
Manjón, J.V., Coupé, P., Raniga, P., et al.: MRI white matter lesion segmentation using an ensemble of neural networks and overcomplete patch-based voting. Comput. Med. Imaging Graph. (2018)
Popescu, V., Agosta, F., Hulst, H.E., et al.: Brain atrophy and lesion load predict long term disability in multiple sclerosis. J. Neurol. Neurosurg. Psychiatry (2013)
Schmidt, P.: Bayesian inference for structured additive regression models for large-scale problems with applications to medical imaging. Ph.D. thesis, LMU (2017)
Schmidt, P., Gaser, C., Arsic, M., et al.: An automated tool for detection of flair-hyperintense white-matter lesions in multiple sclerosis. Neuroimage (2012)
Shiee, N., Bazin, P.L., Ozturk, A., et al.: A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions. NeuroImage (2010)
Sudre, C.H., Cardoso, M.J., Bouvy, W.H., et al.: Bayesian model selection for pathological neuroimaging data applied to white matter lesion segmentation. TMI (2015)
Treaba, C.A., Granberg, T.E., Sormani, M.P., et al.: Longitudinal characterization of cortical lesion development and evolution in multiple sclerosis with 7.0-T MRI. Radiology (2019)
Uher, T., Vaneckova, M., Sobisek, L., et al.: Combining clinical and magnetic resonance imaging markers enhances prediction of 12-year disability in multiple sclerosis. Multiple Sclerosis J. (2017)
Vaidya, S., Chunduru, A., Muthuganapathy, R., et al.: Longitudinal multiple sclerosis lesion segmentation using 3D convolutional neural networks. In: Proceedings of the 2015 Longitudinal Multiple Sclerosis Lesion Segmentation Challenge (2015)
Van Leemput, K., Maes, F., Vandermeulen, D., et al.: Automated segmentation of multiple sclerosis lesions by model outlier detection. TMI (2001)
Vermeer, S.E., Hollander, M., van Dijk, E.J., et al.: Silent brain infarcts and white matter lesions increase stroke risk in the general population: the Rotterdam scan study. Stroke (2003)
Weiss, N., Rueckert, D., Rao, A.: Multiple sclerosis lesion segmentation using dictionary learning and sparse coding. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8149, pp. 735–742. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40811-3_92
Wu, P., et al.: Optimal topological cycles and their application in cardiac trabeculae restoration. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 80–92. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_7
Zipoli, V., Portaccio, E., Siracusa, G., et al.: Interobserver agreement on Poser’s and the new McDonald’s diagnostic criteria for multiple sclerosis. Multiple Sclerosis J. (2003)
Acknowledgement
This research was primarily supported by NIH BRAIN grant 1UM1MH130981. Also supported by NIH grants 1RF1MH123195, 1R01AG070988, 1RF1AG080371. OP was supported by a grant from Lundbeckfonden (grant number R360-2021-395). ASA is a recipient of an American Heart Association Postdoctoral Fellowship.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hu, X., Sorby-Adams, A., Barkhof, F., Taylor Kimberly, W., Puonti, O., Iglesias, J.E. (2025). P-Count: Persistence-Based Counting of White Matter Hyperintensities in Brain MRI. In: Chen, C., Singh, Y., Hu, X. (eds) Topology- and Graph-Informed Imaging Informatics. TGI3 2024. Lecture Notes in Computer Science, vol 15239. Springer, Cham. https://doi.org/10.1007/978-3-031-73967-5_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-73967-5_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73966-8
Online ISBN: 978-3-031-73967-5
eBook Packages: Computer ScienceComputer Science (R0)