Algorithmic Decision Analysis for Multi-stage Games with Incomplete Information | SpringerLink
Skip to main content

Algorithmic Decision Analysis for Multi-stage Games with Incomplete Information

  • Conference paper
  • First Online:
Algorithmic Decision Theory (ADT 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 15248))

Included in the following conference series:

Abstract

Adversarial risk analysis (ARA) provides decision-theoretic arguments to manage uncertainty in competitive decision-making environments. This paper introduces efficient algorithmic approaches to approximate ARA solutions in multi-stage games, covering both sequential and simultaneous settings, through augmented probability simulation. Two examples concerning international piracy and air combat illustrate the proposed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6634
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 8293
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kadane, J.B., Larkey, P.D.: Subjective probability and the theory of games. Manag. Sci. 28(2), 113–120 (1982)

    Article  MathSciNet  Google Scholar 

  2. Raiffa, H.: The Art and Science of Negotiation. Harvard University Press, Cambridge, MA (1982)

    Google Scholar 

  3. Raiffa, H., Richardson, J., Metcalfe, D.: Negotiation Analysis: The Science and Art of Collaborative Decision Making. Harvard University Press, Cambridge, MA (2002)

    Google Scholar 

  4. Hargreaves-Heap, S., Varoufakis, Y.: Game Theory: A Critical Introduction. Routledge, New York (2004)

    Book  Google Scholar 

  5. Angeletos, G.M., Lian, C.: Forward guidance without common knowledge. Am. Econ. Rev. 108(9), 2477–2512 (2018)

    Article  Google Scholar 

  6. Banks, D., Gallego, V., Naveiro, R., Insua, D.R.: Adversarial risk analysis: an overview. Wiley Interdiscip. Rev. Comput. Stat. 14(1), e1530 (2022)

    Google Scholar 

  7. Gil, C., Parra-Arnau, J.: An adversarial-risk-analysis approach to counterterrorist online surveillance. Sens. 19(3) (2019)

    Google Scholar 

  8. Roponen, J., Salo, A.: Adversarial risk analysis for enhancing combat simulation models. J. Mil. Stud. 6(2), 82–103 (2015)

    Article  Google Scholar 

  9. Insua, D.R., Naveiro, R., Gallego, V., Poulos, J.: Adversarial machine learning: Bayesian perspectives. J. Am. Stat. Assoc. 118(543), 2195–2206 (2023)

    Article  MathSciNet  Google Scholar 

  10. Ekin, T., Naveiro, R., Insua, D.R., Torres-Barrán, A.: Augmented probability simulation methods for sequential games. Eur. J. Oper. Res. 306(1), 418–430 (2023)

    Article  MathSciNet  Google Scholar 

  11. Bielza, C., Müller, P., Insua, D.R.: Decision analysis by augmented probability simulation. Manag. Sci. 45(7), 995–1007 (1999)

    Article  Google Scholar 

  12. Stahl, D.O., Wilson, P.W.: On players’ models of other players: theory and experimental evidence. Games Econ. Behav. 10(1), 218–254 (1995)

    Article  MathSciNet  Google Scholar 

  13. Stahl, D.O., Wilson, P.W.: Experimental evidence on players’ models of other players. J. Econ. Behav. Organ. 25(3), 309–327 (1994)

    Article  Google Scholar 

  14. Chacon, J.: The modal age of statistics. Int. Stat. Rev. 88(1), 122–141 (2020)

    Article  MathSciNet  Google Scholar 

  15. French, S., Insua, D.R.: Statistical Decision Theory. Wiley, Hoboken (2000)

    Google Scholar 

  16. Roberts, G.O., Smith, A.F.: Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms. Stoch. process. appl. 49(2), 207–216 (1994)

    Article  MathSciNet  Google Scholar 

  17. Virtanen, K., Karelahti, J., Raivio, T.: Modeling air combat by a moving horizon influence diagram game. J. Guid. Control Dyn. 29(5), 1080–1091 (2006)

    Google Scholar 

  18. Gallego, V., Naveiro, R., Insua, D.R.: Reinforcement learning under threats. In: Proc. AAAI Conf. Artif. Intell. vol. 33, pp. 9939–9940 (2019)

    Google Scholar 

  19. Müller, P., Sansó, B., De Iorio, M.: Optimal Bayesian design by inhomogeneous Markov chain simulation. J. Am. Stat. Assoc. 99(467), 788–798 (2004)

    Article  MathSciNet  Google Scholar 

  20. Sevillano, J.C., Insua, D.R., Rios, J.: Adversarial risk analysis: the Somali pirates case. Decis. Anal. 9(2), 86–95 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

EU’s Horizon 2020 project No. 101021797(STARLIGHT), the AMALFI FBBVA project, AFOSR award FA-9550-21-1-0239, AFOSR-EOARD award FA8655-21-1-7042, and the Spanish Ministry of Science program PID2021-124662OB-I00. DRI supported by the AXA-ICMAT Chair. JMC supported by a fellowship from “la Caixa” Foundation (ID100010434), whose code is LCF/BQ/DI21/11860063.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Camacho .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

No conflict of interests to be declared.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Camacho, J.M., Naveiro, R., Ríos Insua, D. (2025). Algorithmic Decision Analysis for Multi-stage Games with Incomplete Information. In: Freeman, R., Mattei, N. (eds) Algorithmic Decision Theory. ADT 2024. Lecture Notes in Computer Science(), vol 15248. Springer, Cham. https://doi.org/10.1007/978-3-031-73903-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73903-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73902-6

  • Online ISBN: 978-3-031-73903-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics