Protective and Nonprotective Subset Sum Games: A Parameterized Complexity Analysis | SpringerLink
Skip to main content

Protective and Nonprotective Subset Sum Games: A Parameterized Complexity Analysis

  • Conference paper
  • First Online:
Algorithmic Decision Theory (ADT 2024)

Abstract

In Subset Sum Game as studied by Pieterse and Woeginger [Theory of Computing Systems, 2021], two players alternatingly fill a common knapsack each with items from a private collection. The goal of Player A is to reach a value of at least \(T_{{ \texttt {A}}} \), whereas Player B may follow different strategies. Subset Sum Game is NP-complete and solvable in pseudopolynomial time if Player B greedily selects the biggest available item in each turn; the game is PSPACE-complete, however, if Player B plays a hostile strategy where the only aim is to avoid that Player A wins. We continue the study of the game with these two strategies for Player B.

First, we provide a faster pseudopolynomial-time algorithm for a greedy Player B and show that the problem with a hostile Player B is fixed-parameter tractable with respect to the knapsack capacity C. Moreover, we study the influence of further parameters such as \(T_{{ \texttt {A}}} \), the number of rounds in the game, and the number of different numbers in the input on the complexity of the problem. Second, we consider a further variant of the game, called Protective Subset Sum Game, where Player A additionally has the goal that Player B reaches a value of at least \(T_{{ \texttt {B}}} \). In a nutshell, we show that most algorithms for the nonprotective variant can be transferred to Protective Subset Sum Game.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6634
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 8293
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Burks, T.M., Sakallah, K.A.: Min-max linear programming and the timing analysis of digital circuits. In: Proceedings of the 1993 IEEE/ACM International Conference on Computer-Aided Design, pp. 152–155. IEEE Computer Society/ACM (1993)

    Google Scholar 

  2. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3

    Book  Google Scholar 

  3. Darmann, A., Nicosia, G., Pferschy, U., Schauer, J.: The subset sum game. Eur. J. Oper. Res. 233(3), 539–549 (2014)

    Article  MathSciNet  Google Scholar 

  4. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

    Book  Google Scholar 

  5. Fellows, M.R., Gaspers, S., Rosamond, F.A.: Parameterizing by the number of numbers. Theory Comput. Syst. 50(4), 675–693 (2012). https://doi.org/10.1007/s00224-011-9367-y

    Article  MathSciNet  Google Scholar 

  6. Frank, A., Tardos, É.: An application of simultaneous diophantine approximation in combinatorial optimization. Combinatorica 7(1), 49–65 (1987). https://doi.org/10.1007/BF02579200

    Article  MathSciNet  Google Scholar 

  7. Lenstra, H.W., Jr.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–548 (1983)

    Article  MathSciNet  Google Scholar 

  8. Pferschy, U., Nicosia, G., Pacifici, A.: On a Stackelberg subset sum game. Electron Notes Discrete Math. 69, 133–140 (2018)

    Article  MathSciNet  Google Scholar 

  9. Pferschy, U., Nicosia, G., Pacifici, A.: A Stackelberg knapsack game with weight control. Theor. Comput. Sci. 799, 149–159 (2019)

    Article  MathSciNet  Google Scholar 

  10. Pferschy, U., Nicosia, G., Pacifici, A., Schauer, J.: On the Stackelberg knapsack game. Eur. J. Oper. Res. 291(1), 18–31 (2021)

    Article  MathSciNet  Google Scholar 

  11. Pieterse, A., Woeginger, G.J.: The subset sum game revisited. Theory Comput. Syst. 65(5), 884–900 (2021)

    Article  MathSciNet  Google Scholar 

  12. Reis, V., Rothvoss, T.: The subspace flatness conjecture and faster integer programming. In: Proceedings of the 64th IEEE Annual Symposium on Foundations of Computer Science (FOCS 2023), pp. 974–988. IEEE (2023)

    Google Scholar 

  13. Wang, Z., Xing, W., Fang, S.C.: Two-group knapsack game. Theor. Comput. Sci. 411(7–9), 1094–1103 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

Jaroslav Garvardt is supported by the Carl Zeiss Foundation, Germany, within the project “Interactive Inference”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Garvardt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Garvardt, J., Komusiewicz, C., Lorke, B.B., Schestag, J. (2025). Protective and Nonprotective Subset Sum Games: A Parameterized Complexity Analysis. In: Freeman, R., Mattei, N. (eds) Algorithmic Decision Theory. ADT 2024. Lecture Notes in Computer Science(), vol 15248. Springer, Cham. https://doi.org/10.1007/978-3-031-73903-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73903-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73902-6

  • Online ISBN: 978-3-031-73903-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics