Compiling the Votes of a Subelectorate for Multi-winner Voting Rules | SpringerLink
Skip to main content

Compiling the Votes of a Subelectorate for Multi-winner Voting Rules

  • Conference paper
  • First Online:
Algorithmic Decision Theory (ADT 2024)

Abstract

Compiling the votes of a subelectorate is a well-known problem in computational social choice. The goal is to store the information contained in the votes cast by a subelectorate in a space-efficient way, such that when the rest of the votes become available, the winners can be accurately ascertained. This problem has been studied for single-winner voting rules. We provide a comprehensive compilation complexity landscape for several ordinal and approval-based multi-winner voting rules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6634
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 8293
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    For approval-based rules, by (abc) we indicate that abc are approved in the vote. For ordinal rules we sometimes use (abc) to indicate the vote \(a \succ b \succ c\).

References

  1. Aziz, H., Elkind, E., Faliszewski, P., Lackner, M., Skowron, P.: The Condorcet principle for multiwinner elections: from shortlisting to proportionality. In: Proceedings of IJCAI 2017, pp. 84–90 (2017)

    Google Scholar 

  2. Barberà, S., Coelho, D.: How to choose a non-controversial list with k names. Soc. Choice Welf. 31(1), 79–96 (2008)

    Article  MathSciNet  Google Scholar 

  3. Chevaleyre, Y., Lang, J., Maudet, N., Monnot, J.: Compilation and communication protocols for voting rules with a dynamic set of candidates. In: Proceedings of TARK 2011, pp. 153–160 (2011)

    Google Scholar 

  4. Chevaleyre, Y., Lang, J., Maudet, N., Ravilly-Abadie, G.: Compiling the votes of a subelectorate. In: Proceedings of IJCAI 2009, pp. 97–102 (2009)

    Google Scholar 

  5. Coelho, D.: Understanding, evaluating and selecting voting rules through games and axioms. Ph.D. thesis (2004)

    Google Scholar 

  6. Conitzer, V., Sandholm, T.: Vote elicitation: complexity and strategy-proofness. In: Proceedings of AAAI-2001, pp. 392–397 (2002)

    Google Scholar 

  7. Dey, P., Bhattacharyya, A.: Sample complexity for winner prediction in elections. In: Proceedings of AAMAS 2015, pp. 1421–1430 (2015)

    Google Scholar 

  8. Dey, P., Talmon, N., Van Handel, O.: Proportional representation in vote streams. arXiv preprint arXiv:1702.08862 (2017)

  9. Elkind, E., Faliszewski, P., Skowron, P., Slinko, A.: Properties of multiwinner voting rules. Soc. Choice Welf. 48(3), 599–632 (2017)

    Article  MathSciNet  Google Scholar 

  10. Elkind, E., Lang, J., Saffidine, A.: Condorcet winning sets. Soc. Choice Welf. 44(3), 493–517 (2015)

    Article  MathSciNet  Google Scholar 

  11. Faliszewski, P., Skowron, P., Slinko, A., Talmon, N.: Multiwinner voting: a new challenge for social choice theory. Trends Comput. Soc. Choice 74, 27–47 (2017)

    MathSciNet  Google Scholar 

  12. Gehrlein, W.: The condorcet criterion and committee selection. Math. Soc. Sci. 10(3), 199–209 (1985)

    Article  MathSciNet  Google Scholar 

  13. Hazon, N., Aumann, Y., Kraus, S., Wooldridge, M.: On the evaluation of election outcomes under uncertainty. Artif. Intell. 189, 1–18 (2012)

    Article  MathSciNet  Google Scholar 

  14. Janson, S.: Phragmén’s and thiele’s election methods. Technical report (2016)

    Google Scholar 

  15. Konczak, K., Lang, J.: Voting procedures with incomplete preferences. In: Proceedings of the IJCAI-2005 Multidisciplinary Workshop on Advances in Preference Handling, vol. 20. Citeseer (2005)

    Google Scholar 

  16. Lackner, M., Skowron, P.: Multi-Winner Voting with Approval Preferences - Artificial Intelligence, Multiagent Systems, and Cognitive Robotics. Springer Briefs in Intelligent Systems, Springer, Cham (2023). https://doi.org/10.1007/978-3-031-09016-5

    Book  Google Scholar 

  17. Peters, D., Pierczyński, G., Skowron, P.: Proportional participatory budgeting with additive utilities. In: Proceedings of NeurIPS 2021, pp. 12726–12737 (2021)

    Google Scholar 

  18. Skowron, P., Faliszewski, P., Slinko, A.: Axiomatic characterization of committee scoring rules. J. Econ. Theory 180, 244–273 (2019)

    Article  MathSciNet  Google Scholar 

  19. Xia, L., Conitzer, V.: Compilation complexity of common voting rules. In: Proceedings of AAAI 2010, pp. 915–920 (2010)

    Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous reviewers for their careful reading and helpful comments. This work was supported in part by project ANR-22-CE26-0019 “Citizens”, funded by the French Agence Nationale de la Recherche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neel Karia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karia, N., Lang, J. (2025). Compiling the Votes of a Subelectorate for Multi-winner Voting Rules. In: Freeman, R., Mattei, N. (eds) Algorithmic Decision Theory. ADT 2024. Lecture Notes in Computer Science(), vol 15248. Springer, Cham. https://doi.org/10.1007/978-3-031-73903-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73903-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73902-6

  • Online ISBN: 978-3-031-73903-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics