Abstract
3D Gaussian Splatting demonstrates excellent quality and speed in novel view synthesis. Nevertheless, the huge file size of the 3D Gaussians presents challenges for transmission and storage. Current works design compact models to replace the substantial volume and attributes of 3D Gaussians, along with intensive training to distill information. These endeavors demand considerable training time, presenting formidable hurdles for practical deployment. To this end, we propose MesonGS, a codec for post-training compression of 3D Gaussians. Initially, we introduce a measurement criterion that considers both view-dependent and view-independent factors to assess the impact of each Gaussian point on the rendering output, enabling the removal of insignificant points. Subsequently, we decrease the entropy of attributes through two transformations that complement subsequent entropy coding techniques to enhance the file compression rate. More specifically, we first replace rotation quaternions with Euler angles; then, we apply region adaptive hierarchical transform to key attributes to reduce entropy. Lastly, we adopt finer-grained quantization to avoid excessive information loss. Moreover, a well-crafted finetune scheme is devised to restore quality. Extensive experiments demonstrate that MesonGS significantly reduces the size of 3D Gaussians while preserving competitive quality.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-NeRF 360: Unbounded anti-aliased neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 5470–5479 (2022)
Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Zip-NeRF: anti-aliased grid-based neural radiance fields. In: ICCV (2023)
Bengio, Y., Léonard, N., Courville, A.: Estimating or propagating gradients through stochastic neurons for conditional computation (2013). https://arxiv.org/abs/1308.3432
Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: TensoRF: tensorial radiance fields. In: Avidan, S., Brostow, G.J., Cissé, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision - ECCV 2022 - 17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XXXII. Lecture Notes in Computer Science, vol. 13692, pp. 333–350. Springer (2022). https://doi.org/10.1007/978-3-031-19824-3_20
Chen, A., Xu, Z., Wei, X., Tang, S., Su, H., Geiger, A.: Factor fields: a unified framework for neural fields and beyond (2023). https://arxiv.org/abs/2302.01226
Chen, Z., Li, Z., Song, L., Chen, L., Yu, J., Yuan, J., Xu, Y.: NeuRBF: a neural fields representation with adaptive radial basis functions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4182–4194 (2023)
Chen, Z., Funkhouser, T.A., Hedman, P., Tagliasacchi, A.: MobileNeRF: exploiting the polygon rasterization pipeline for efficient neural field rendering on mobile architectures. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023, Vancouver, BC, Canada, June 17-24, 2023, pp. 16569–16578. IEEE (2023). https://doi.org/10.1109/CVPR52729.2023.01590
De Queiroz, R.L., Chou, P.A.: Compression of 3D point clouds using a region-adaptive hierarchical transform. IEEE Trans. Image Process. 25(8), 3947–3956 (2016)
Deng, C.L., Tartaglione, E.: Compressing explicit voxel grid representations: fast nerfs become also small. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1236–1245 (2023)
Equitz, W.H.: A new vector quantization clustering algorithm. IEEE Trans. Acoust. Speech Signal Process. 37(10), 1568–1575 (1989)
Fan, Z., Wang, K., Wen, K., Zhu, Z., Xu, D., Wang, Z.: LightGaussian: unbounded 3D gaussian compression with 15x reduction and 200+ FPS. arXiv preprint arXiv:2311.17245 (2023)
Fang, G., Hu, Q., Wang, H., Xu, Y., Guo, Y.: 3DAC: learning attribute compression for point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14819–14828 (2022)
Fang, G., Hu, Q., Wang, L., Guo, Y.: ACRF: Compressing explicit neural radiance fields via attribute compression. In: International Conference on Learning Representations(ICLR) (2024)
Frantar, E., Ashkboos, S., Hoefler, T., Alistarh, D.: GPTQ: accurate post-training compression for generative pretrained transformers. In: ICLR (2023)
Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels: radiance fields without neural networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 5491–5500. IEEE (2022). https://doi.org/10.1109/CVPR52688.2022.00542
Gailly, J.l., Adler, M.: ZLIB general purpose compression library. user manual zlib version 1(4) (2003)
Girish, S., Gupta, K., Shrivastava, A.: Eagles: efficient accelerated 3D gaussians with lightweight encodings. arXiv preprint arXiv:2312.04564 (2023)
Girish, S., Shrivastava, A., Gupta, K.: SHACIRA: scalable hash-grid compression for implicit neural representations. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 17513–17524 (2023)
Hedman, P., et al.: Deep blending for free-viewpoint image-based rendering. ToG (2018)
Hedman, P., Srinivasan, P.P., Mildenhall, B., Barron, J.T., Debevec, P.E.: Baking neural radiance fields for real-time view synthesis. In: 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021, Montreal, QC, Canada, October 10-17, 2021, pp. 5855–5864. IEEE (2021). https://doi.org/10.1109/ICCV48922.2021.00582
Hu, W., et al.: Tri-MipRF: tri-Mip representation for efficient anti-aliasing neural radiance fields. In: ICCV (2023)
Huffman, D.A.: A method for the construction of minimum-redundancy codes. Proc. IRE 40(9), 1098–1101 (1952)
Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3D gaussian splatting for real-time radiance field rendering. ACM Trans. Graph. (ToG) 42(4), 1–14 (2023)
Knapitsch, A., et al. Tanks and temples: benchmarking large-scale scene reconstruction. ToG (2017)
Lee, J.C., Rho, D., Sun, X., Ko, J.H., Park, E.: Compact 3D gaussian representation for radiance field. arXiv preprint arXiv:2311.13681 (2023)
Li, L., Shen, Z., Wang, Z., Shen, L., Bo, L.: Compressing volumetric radiance fields to 1 mb. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4222–4231 (2023)
Mahmoud, O., Ladune, T., Gendrin, M.: CAwa-NeRF: instant learning of compression-aware nerf features. arXiv preprint arXiv:2310.14695 (2023)
Meagher, D.: Geometric modeling using octree encoding. Comput. Graph. Image Process. 19(2), 129–147 (1982)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: Nerf: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)
Morgenstern, W., Barthel, F., Hilsmann, A., Eisert, P.: Compact 3D scene representation via self-organizing gaussian grids. arXiv preprint arXiv:2312.13299 (2023)
Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph. (ToG) 41(4), 1–15 (2022)
Navaneet, K., Meibodi, K.P., Koohpayegani, S.A., Pirsiavash, H.: Compact3D: compressing gaussian splat radiance field models with vector quantization. arXiv preprint arXiv:2311.18159 (2023)
Niedermayr, S., Stumpfegger, J., Westermann, R.: Compressed 3D gaussian splatting for accelerated novel view synthesis. In: CVPR (2024)
Papantonakis, P., Kopanas, G., Kerbl, B., Lanvin, A., Drettakis, G.: Reducing the memory footprint of 3D gaussian splatting. Proc. ACM Comput. Graph. Interact. Tech. 7(1), 1–17 (2024). https://repo-sam.inria.fr/fungraph/reduced-3dgs/
Pranckevičius, A.: https://aras-p.info/blog/2023/09/13/Making-Gaussian-Splats-smaller/ (2023). Accessed 28 Oct 2023
Pranckevičius, A.: https://aras-p.info/blog/2023/09/27/Making-Gaussian-Splats-more-smaller/ (2023). Accessed 28 Oct 2023
Qin, M., Li, W., Zhou, J., Wang, H., Pfister, H.: LangSplat: 3D language gaussian splatting. arXiv preprint arXiv:2312.16084 (2023)
Reiser, C., et al.: MERF: memory-efficient radiance fields for real-time view synthesis in unbounded scenes. ACM Trans. Graph. 42(4), 1–12 (2023). https://doi.org/10.1145/3592426
Rho, D., Lee, B., Nam, S., Lee, J.C., Ko, J.H., Park, E.: Masked wavelet representation for compact neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 20680–20690 (June 2023)
Richardson, I.E.: H. 264 and MPEG-4 Video Compression: Video Coding for Next-generation Multimedia. John Wiley & Sons (2004)
Schwarz, S., Preda, M., Baroncini, V., Budagavi, M., Cesar, P., Chou, P.A., Cohen, R.A., Krivokuća, M., Lasserre, S., Li, Z., et al.: Emerging mpeg standards for point cloud compression. IEEE J. Emerg. Sel. Top. Circuits Syst. 9(1), 133–148 (2018)
Sculley, D.: Web-scale k-means clustering. In: Proceedings of the 19th International Conference on World Wide Web. pp. 1177–1178. Association for Computing Machinery, New York, USA (2010). https://doi.org/10.1145/1772690.1772862
Shin, S., Park, J.: Binary radiance fields. arXiv preprint arXiv:2306.07581 (2023)
Song, R., Fu, C., Liu, S., Li, G.: Efficient hierarchical entropy model for learned point cloud compression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14368–14377 (2023)
Sun, C., Sun, M., Chen, H.T.: Direct voxel grid optimization: super-fast convergence for radiance fields reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5459–5469 (2022)
Takikawa, T., et al.: Variable bitrate neural fields. In: Nandigjav, M., Mitra, N.J., Hertzmann, A. (eds.) SIGGRAPH: special Interest Group on Computer Graphics and Interactive Techniques Conference, Vancouver, BC, Canada, pp. 1–9. ACM (2022). https://doi.org/10.1145/3528233.3530727
Tang, C., et al.: Mixed-precision neural network quantization via learned layer-wise importance. In: European Conference on Computer Vision (2022)
Wang, L., et al.: Neural residual radiance fields for streamably free-viewpoint videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 76–87 (2023)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Wei, X., Zhang, Y., Li, Y., Zhang, X., Gong, R., Guo, J., Liu, X.: Outlier suppression+: accurate quantization of large language models by equivalent and effective shifting and scaling. In: Bouamor, H., Pino, J., Bali, K. (eds.) Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pp. 1648–1665. Association for Computational Linguistics, Singapore (December 2023). https://doi.org/10.18653/v1/2023.emnlp-main.102, https://aclanthology.org/2023.emnlp-main.102
Weinberger, M.J., Seroussi, G., Sapiro, G.: The loco-i lossless image compression algorithm: principles and standardization into jpeg-ls. IEEE Trans. Image Process. 9(8), 1309–1324 (2000)
Witten, I.H., Neal, R.M., Cleary, J.G.: Arithmetic coding for data compression. Commun. ACM 30(6), 520–540 (1987)
Xu, Q., et al.: Point-nerf: point-based neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5438–5448 (2022)
Yifan, W., Serena, F., Wu, S., Öztireli, C., Sorkine-Hornung, O.: Differentiable surface splatting for point-based geometry processing. ACM Trans. Graph. (TOG) 38(6), 1–14 (2019)
Zhang, C., Florencio, D., Loop, C.: Point cloud attribute compression with graph transform. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 2066–2070. IEEE (2014)
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)
Zhao, T., Chen, J., Leng, C., Cheng, J.: TinyNeRF: towards 100 x compression of voxel radiance fields. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 3588–3596 (2023)
Zhao, Y., et al.: Atom: low-bit quantization for efficient and accurate LLM serving. In: Gibbons, P., Pekhimenko, G., Sa, C.D. (eds.) Proceedings of Machine Learning and Systems, vol. 6, pp. 196–209 (2024). https://proceedings.mlsys.org/paper_files/paper/2024/file/5edb57c05c81d04beb716ef1d542fe9e-Paper-Conference.pdf
Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans. Inf. Theory 23(3), 337–343 (1977)
Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding. IEEE Trans. Inf. Theory 24(5), 530–536 (1978)
Zwicker, M., Pfister, H., van Baar, J., Gross, M.: EWA volume splatting. In: Proceedings Visualization, 2001. VIS ’01, pp. 29–538 (2001). https://doi.org/10.1109/VISUAL.2001.964490
, Zwicker, M., Pfister, H., Van Baar, J., Gross, M.: Surface splatting. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 371–378 (2001)
Červený, J.: https://gsplat.tech (2023). Accessed 28 Oct 2023
Acknowledgments
This work is supported in part by National Key Research and Development Project of China (Grant No. 2023YFF0905502) and Shenzhen Science and Technology Program (Grant No. JCYJ20220818101014030). We thank anonymous reviewers for their valuable advice and JiangXingAI for sponsoring the research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Xie, S. et al. (2025). MesonGS: Post-training Compression of 3D Gaussians via Efficient Attribute Transformation. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15091. Springer, Cham. https://doi.org/10.1007/978-3-031-73414-4_25
Download citation
DOI: https://doi.org/10.1007/978-3-031-73414-4_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73413-7
Online ISBN: 978-3-031-73414-4
eBook Packages: Computer ScienceComputer Science (R0)