$$I^2$$ -SLAM: Inverting Imaging Process for Robust Photorealistic Dense SLAM | SpringerLink
Skip to main content

\(I^2\)-SLAM: Inverting Imaging Process for Robust Photorealistic Dense SLAM

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

We present an inverse image-formation module that can enhance the robustness of existing visual SLAM pipelines for casually captured scenarios. Casual video captures often suffer from motion blur and varying appearances, which degrade the final quality of coherent 3D visual representation. We propose integrating the physical imaging into the SLAM system, which employs linear HDR radiance maps to collect measurements. Specifically, individual frames aggregate images of multiple poses along the camera trajectory to explain prevalent motion blur in hand-held videos. Additionally, we accommodate per-frame appearance variation by dedicating explicit variables for image formation steps, namely white balance, exposure time, and camera response function. Through joint optimization of additional variables, the SLAM pipeline produces high-quality images with more accurate trajectories. Extensive experiments demonstrate that our approach can be incorporated into recent visual SLAM pipelines using various scene representations, such as neural radiance fields or Gaussian splatting. Project website.

G. Bae and C. Choi—Authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8465
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Online Community Blender: Blender - a 3D modelling and rendering package. Blender Foundation, Stichting Blender Foundation, Amsterdam (2018). http://www.blender.org

  2. Bloesch, M., Czarnowski, J., Clark, R., Leutenegger, S., Davison, A.J.: Codeslam—learning a compact, optimisable representation for dense visual SLAM. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2560–2568 (2018)

    Google Scholar 

  3. Bloesch, M., Laidlow, T., Clark, R., Leutenegger, S., Davison, A.J.: Learning meshes for dense visual SLAM. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5855–5864 (2019)

    Google Scholar 

  4. Bylow, E., Sturm, J., Kerl, C., Kahl, F., Cremers, D.: Real-time camera tracking and 3D reconstruction using signed distance functions. In: Robotics: Science and Systems, vol. 2, p. 2 (2013)

    Google Scholar 

  5. Chakrabarti, A.: A neural approach to blind motion deblurring. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016, Part III. LNCS, vol. 9907, pp. 221–235. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_14

    Chapter  Google Scholar 

  6. Chaplot, D.S., Gandhi, D., Gupta, S., Gupta, A., Salakhutdinov, R.: Learning to explore using active neural SLAM. In: International Conference on Learning Representations (ICLR) (2020)

    Google Scholar 

  7. Chen, C., Chen, Q., Xu, J., Koltun, V.: Learning to see in the dark. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3291–3300 (2018)

    Google Scholar 

  8. Chen, T., Culbertson, P., Schwager, M.: CATNIPS: collision avoidance through neural implicit probabilistic scenes. arXiv preprint arXiv:2302.12931 (2023)

  9. Cho, S., Lee, S.: Fast motion deblurring. In: ACM SIGGRAPH Asia 2009 papers, pp. 1–8 (2009)

    Google Scholar 

  10. Covolan, J.P.M., Sementille, A.C., Sanches, S.R.R.: A mapping of visual SLAM algorithms and their applications in augmented reality. In: 2020 22nd Symposium on Virtual and Augmented Reality (SVR), pp. 20–29. IEEE (2020)

    Google Scholar 

  11. Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: ScanNet: Richly-annotated 3D reconstructions of indoor scenes. In: Proceedings of the Computer Vision and Pattern Recognition (CVPR). IEEE (2017)

    Google Scholar 

  12. Dai, A., Nießner, M., Zollhöfer, M., Izadi, S., Theobalt, C.: BundleFusion: real-time globally consistent 3D reconstruction using on-the-fly surface reintegration. ACM Trans. Graph. (ToG) 36(4), 1 (2017)

    Article  Google Scholar 

  13. Debevec, P.E., Malik, J.: Recovering high dynamic range radiance maps from photographs. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1997, pp. 369–378. ACM Press/Addison-Wesley Publishing Co., USA (1997). https://doi.org/10.1145/258734.258884

  14. Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T.: Removing camera shake from a single photograph. In: ACM SIGGRAPH 2006 Papers, pp. 787–794 (2006)

    Google Scholar 

  15. Gupta, S., Davidson, J., Levine, S., Sukthankar, R., Malik, J.: Cognitive mapping and planning for visual navigation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2616–2625 (2017)

    Google Scholar 

  16. Hu, Y., He, H., Xu, C., Wang, B., Lin, S.: Exposure: a white-box photo post-processing framework. ACM Trans. Graph. (TOG) 37(2), 1–17 (2018)

    Article  Google Scholar 

  17. Huang, H., Li, L., Cheng, H., Yeung, S.K.: Photo-SLAM: real-time simultaneous localization and photorealistic mapping for monocular, stereo, and RGB-D cameras. arXiv preprint arXiv:2311.16728 (2023)

  18. Huang, X., Zhang, Q., Feng, Y., Li, H., Wang, X., Wang, Q.: HDR-NeRF: high dynamic range neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18398–18408 (2022)

    Google Scholar 

  19. Jaderberg, M., Simonyan, K., Zisserman, A., kavukcuoglu, K.: Spatial transformer networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 28. Curran Associates, Inc. (2015). https://proceedings.neurips.cc/paper_files/paper/2015/file/33ceb07bf4eeb3da587e268d663aba1a-Paper.pdf

  20. Jatavallabhula, K.M., et al.: ConceptFusion: open-set multimodal 3D mapping. arXiv preprint arXiv:2302.07241 (2023)

  21. Jinyu, L., Bangbang, Y., Danpeng, C., Nan, W., Guofeng, Z., Hujun, B.: Survey and evaluation of monocular visual-inertial slam algorithms for augmented reality. Virtual Real. Intell. Hardw. 1(4), 386–410 (2019)

    Article  Google Scholar 

  22. Jun-Seong, K., Yu-Ji, K., Ye-Bin, M., Oh, T.H.: HDR-Plenoxels: self-calibrating high dynamic range radiance fields. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13692, pp. 384–401. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19824-3_23

    Chapter  Google Scholar 

  23. Keetha, N., et al.: SplaTAM: splat, track & map 3D Gaussians for dense RGB-D SLAM. arXiv preprint arXiv:2312.02126 (2023)

  24. Keller, M., Lefloch, D., Lambers, M., Izadi, S., Weyrich, T., Kolb, A.: Real-time 3d reconstruction in dynamic scenes using point-based fusion. In: 2013 International Conference on 3D Vision-3DV 2013. pp. 1–8. IEEE (2013)

    Google Scholar 

  25. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3D Gaussian splatting for real-time radiance field rendering. ACM Trans. Graph. 42(4) (2023)

    Google Scholar 

  26. Lin, C.H., Ma, W.C., Torralba, A., Lucey, S.: BARF: bundle-adjusting neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5741–5751 (2021)

    Google Scholar 

  27. Liu, Y.L., et al.: Single-image HDR reconstruction by learning to reverse the camera pipeline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1651–1660 (2020)

    Google Scholar 

  28. Ma, L., et al.: Deblur-NeRF: neural radiance fields from blurry images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12861–12870 (2022)

    Google Scholar 

  29. Matsuki, H., Murai, R., Kelly, P.H., Davison, A.J.: Gaussian splatting SLAM. arXiv preprint arXiv:2312.06741 (2023)

  30. Mildenhall, B., Hedman, P., Martin-Brualla, R., Srinivasan, P.P., Barron, J.T.: NeRF in the dark: high dynamic range view synthesis from noisy raw images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16190–16199 (2022)

    Google Scholar 

  31. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)

    Article  Google Scholar 

  32. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. ACM Trans. Graph. (ToG) 41(4), 1–15 (2022)

    Article  Google Scholar 

  33. Newcombe, R.A., ET AL.: KinectFusion: real-time dense surface mapping and tracking. In: 2011 10th IEEE International Symposium on Mixed and Augmented Reality, pp. 127–136. IEEE (2011)

    Google Scholar 

  34. Newcombe, R.A., Lovegrove, S.J., Davison, A.J.: DTAM: dense tracking and mapping in real-time. In: 2011 International Conference on Computer Vision, pp. 2320–2327. IEEE (2011)

    Google Scholar 

  35. Nießner, M., Zollhöfer, M., Izadi, S., Stamminger, M.: Real-time 3D reconstruction at scale using voxel hashing. ACM Trans. Graph. (ToG) 32(6), 1–11 (2013)

    Article  Google Scholar 

  36. Oleynikova, H., Taylor, Z., Fehr, M., Siegwart, R., Nieto, J.: Voxblox: incremental 3D euclidean signed distance fields for on-board MAV planning. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1366–1373. IEEE (2017)

    Google Scholar 

  37. Ortiz, J., Clegg, A., Dong, J., Sucar, E., Novotny, D., Zollhoefer, M., Mukadam, M.: ISDF: real-time neural signed distance fields for robot perception. In: Robotics: Science and Systems (2022)

    Google Scholar 

  38. Rosinol, A., Leonard, J.J., Carlone, L.: NeRF-SLAM: real-time dense monocular SLAM with neural radiance fields. In: 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3437–3444. IEEE (2023)

    Google Scholar 

  39. Rückert, D., Franke, L., Stamminger, M.: ADOP: approximate differentiable one-pixel point rendering. ACM Trans. Graph. (ToG) 41(4), 1–14 (2022)

    Google Scholar 

  40. Sandström, E., Li, Y., Van Gool, L., Oswald, M.R.: Point-SLAM: dense neural point cloud-based SLAM. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 18433–18444 (2023)

    Google Scholar 

  41. Sarbolandi, H., Lefloch, D., Kolb, A.: Kinect range sensing: structured-light versus time-of-flight kinect. Comput. Vis. Image Underst. 139, 1–20 (2015)

    Article  Google Scholar 

  42. Schops, T., Sattler, T., Pollefeys, M.: BAD SLAM: bundle adjusted direct RGB-D SLAM. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 134–144 (2019)

    Google Scholar 

  43. Shafiullah, N.M.M., Paxton, C., Pinto, L., Chintala, S., Szlam, A.: Clip-fields: weakly supervised semantic fields for robotic memory. arXiv preprint arXiv:2210.05663 (2022)

  44. Shan, Q., Jia, J., Agarwala, A.: High-quality motion deblurring from a single image. ACM Trans. Graph. (ToG) 27(3), 1–10 (2008)

    Article  Google Scholar 

  45. Shen, W., Yang, G., Yu, A., Wong, J., Kaelbling, L.P., Isola, P.: Distilled feature fields enable few-shot language-guided manipulation. In: 7th Annual Conference on Robot Learning (2023)

    Google Scholar 

  46. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D SLAM systems. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 573–580. IEEE (2012)

    Google Scholar 

  47. Sucar, E., Liu, S., Ortiz, J., Davison, A.J.: iMAP: implicit mapping and positioning in real-time. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6229–6238 (2021)

    Google Scholar 

  48. Sun, J., Cao, W., Xu, Z., Ponce, J.: Learning a convolutional neural network for non-uniform motion blur removal. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 769–777 (2015)

    Google Scholar 

  49. Tang, J.: Torch-NGP: a PyTorch implementation of instant-NGP (2022). https://github.com/ashawkey/torch-ngp

  50. Teed, Z., Deng, J.: Droid-SLAM: deep visual slam for monocular, stereo, and RGB-D cameras. Adv. Neural. Inf. Process. Syst. 34, 16558–16569 (2021)

    Google Scholar 

  51. Wang, H., Wang, J., Agapito, L.: Co-SLAM: joint coordinate and sparse parametric encodings for neural real-time SLAM. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13293–13302 (2023)

    Google Scholar 

  52. Wang, P., Zhao, L., Ma, R., Liu, P.: BAD-NeRF: bundle adjusted deblur neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4170–4179 (2023)

    Google Scholar 

  53. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  54. Whelan, T., Leutenegger, S., Salas-Moreno, R., Glocker, B., Davison, A.: ElasticFusion: dense SLAM without a pose graph. In: Robotics: Science and Systems (2015)

    Google Scholar 

  55. Whelan, T., Salas-Moreno, R.F., Glocker, B., Davison, A.J., Leutenegger, S.: ElasticFusion: real-time dense slam and light source estimation. Int. J. Robot. Res. 35(14), 1697–1716 (2016)

    Article  Google Scholar 

  56. Whyte, O., Sivic, J., Zisserman, A., Ponce, J.: Non-uniform deblurring for shaken images. Int. J. Comput. Vision 98, 168–186 (2012)

    Article  MathSciNet  Google Scholar 

  57. Yugay, V., Li, Y., Gevers, T., Oswald, M.R.: Gaussian-SLAM: photo-realistic dense slam with Gaussian splatting. arXiv preprint arXiv:2312.10070 (2023)

  58. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

  59. Zhang, X., Matzen, K., Nguyen, V., Yao, D., Zhang, Y., Ng, R.: Synthetic defocus and look-ahead autofocus for casual videography. arXiv preprint arXiv:1905.06326 (2019)

  60. Zhu, Z., et al.: Nice-SLAM: neural implicit scalable encoding for SLAM. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12786–12796 (2022)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Research Foundation of Korea (NRF) grant (No. RS-2023-00218601) and IITP grant [NO. RS-2021-II211343, Artificial Intelligence Graduate School Program (Seoul National University)] funded by the Korea government (MSIT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Min Kim .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 34094 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bae, G., Choi, C., Heo, H., Kim, S.M., Kim, Y.M. (2025). \(I^2\)-SLAM: Inverting Imaging Process for Robust Photorealistic Dense SLAM. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15085. Springer, Cham. https://doi.org/10.1007/978-3-031-73383-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73383-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73382-6

  • Online ISBN: 978-3-031-73383-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics