Abstract
Diffusion models, which revolutionized image generation, are facing challenges related to intellectual property. These challenges arise when a generated image is influenced by copyrighted images from the training data, a plausible scenario in internet-collected data. Hence, pinpointing influential images from the training dataset, a task known as data attribution, becomes crucial for transparency of content origins. We introduce MONTRAGE, a pioneering data attribution method. Unlike existing approaches that analyze the model post-training, MONTRAGE integrates a novel technique to monitor generations throughout the training via internal model representations. It is tailored for customized diffusion models, where training dynamics access is a practical assumption. This approach, coupled with a new loss function, enhances performance while maintaining efficiency. The advantage of MONTRAGE is evaluated in two granularity-levels: Between-concepts and within-concept, outperforming current state-of-the-art methods for high accuracy. This substantiates MONTRAGE’s insights on diffusion models and its contribution towards copyright solutions for AI digital-art.
J. Brokman and O. Hofman—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
New York Times: AI Image Generators and Copyright Issues.
- 2.
Harvard Business Review: Generative AI and Intellectual Property Challenges.
- 3.
Adobe Blog: FAIR Act to Protect Artists in the Age of AI.
- 4.
Sometimes Markovianity is not admitted, nonetheless, a multi-step gradual process is still the common practice today.
- 5.
The shifted cosine similarity function adjusts the standard cosine similarity range from \([-1,1]\) to \([0,1]\), aligning with the ground truth values for comparison.
- 6.
References
The proof and measurement of association between two things (1961)
Achille, A., Rovere, M., Soatto, S.: Critical learning periods in deep neural networks. arXiv preprint arXiv:1711.08856 (2017)
Brokman, J., Betser, R., Turjeman, R., Berkov, T., Cohen, I., Gilboa, G.: Enhancing neural training via a correlated dynamics model. In: The Twelfth International Conference on Learning Representations (2024). https://openreview.net/forum?id=c9xsaASm9L
Carlini, N., et al.: Extracting training data from diffusion models. In: 32nd USENIX Security Symposium (USENIX Security 2023), pp. 5253–5270 (2023)
Chandramoorthy, N., Loukas, A., Gatmiry, K., Jegelka, S.: On the generalization of learning algorithms that do not converge. Adv. Neural. Inf. Process. Syst. 35, 34241–34257 (2022)
Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. Adv. Neural. Inf. Process. Syst. 34, 8780–8794 (2021)
Fan, M., Chen, C., Wang, C., Huang, J.: On the trustworthiness landscape of state-of-the-art generative models: a comprehensive survey. arXiv preprint arXiv:2307.16680 (2023)
Gal, R., et al.: An image is worth one word: personalizing text-to-image generation using textual inversion. arXiv preprint arXiv:2208.01618 (2022)
Gandikota, R., Orgad, H., Belinkov, Y., Materzyńska, J., Bau, D.: Unified concept editing in diffusion models. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 5111–5120 (2024)
Georgiev, K., Vendrow, J., Salman, H., Park, S.M., Madry, A.: The journey, not the destination: how data guides diffusion models. arXiv preprint arXiv:2312.06205 (2023)
Guo, H., Rajani, N., Hase, P., Bansal, M., Xiong, C.: FastIF: scalable influence functions for efficient model interpretation and debugging. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 10333–10350 (2021)
Hara, S., Nitanda, A., Maehara, T.: Data cleansing for models trained with SGD. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Harden, M.: The artchive. https://www.artchive.com/
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)
Hu, E.J., et al.: LoRA: low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685 (2021)
Jiang, H.H., et al.: AI art and its impact on artists. In: Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and Society, pp. 363–374 (2023)
Kawar, B., et al.: Imagic: text-based real image editing with diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6007–6017 (2023)
Khanna, R., Kim, B., Ghosh, J., Koyejo, S.: Interpreting black box predictions using fisher kernels. In: The 22nd International Conference on Artificial Intelligence and Statistics, pp. 3382–3390. PMLR (2019)
Koh, P.W., Liang, P.: Understanding black-box predictions via influence functions. In: International Conference on Machine Learning, pp. 1885–1894. PMLR (2017)
Kumari, N., Zhang, B., Wang, S.Y., Shechtman, E., Zhang, R., Zhu, J.Y.: Ablating concepts in text-to-image diffusion models. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 22691–22702 (2023)
Kumari, N., Zhang, B., Zhang, R., Shechtman, E., Zhu, J.Y.: Multi-concept customization of text-to-image diffusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1931–1941 (2023)
Kwon, Y., Wu, E., Wu, K., Zou, J.: DataInf: efficiently estimating data influence in loRA-tuned LLMs and diffusion models. In: The Twelfth International Conference on Learning Representations (2024). https://openreview.net/forum?id=9m02ib92Wz
Park, S.M., Georgiev, K., Ilyas, A., Leclerc, G., Mądry, A.: TRAK: attributing model behavior at scale. In: Proceedings of the 40th International Conference on Machine Learning, pp. 27074–27113 (2023)
Pruthi, G., Liu, F., Kale, S., Sundararajan, M.: Estimating training data influence by tracing gradient descent. Adv. Neural. Inf. Process. Syst. 33, 19920–19930 (2020)
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)
Roich, D., Mokady, R., Bermano, A.H., Cohen-Or, D.: Pivotal tuning for latent-based editing of real images. ACM Trans. Graph. (TOG) 42(1), 1–13 (2022)
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)
Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., Aberman, K.: DreamBooth: fine tuning text-to-image diffusion models for subject-driven generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22500–22510 (2023)
Saharia, C., et al.: Photorealistic text-to-image diffusion models with deep language understanding. Adv. Neural. Inf. Process. Syst. 35, 36479–36494 (2022)
Schuhmann, C., et al.: LAION-5B: an open large-scale dataset for training next generation image-text models. Adv. Neural. Inf. Process. Syst. 35, 25278–25294 (2022)
Somepalli, G., Singla, V., Goldblum, M., Geiping, J., Goldstein, T.: Diffusion art or digital forgery? Investigating data replication in diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6048–6058 (2023)
Wang, S.Y., Efros, A.A., Zhu, J.Y., Zhang, R.: Evaluating data attribution for text-to-image models. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7192–7203 (2023)
Yang, L., et al.: Diffusion models: a comprehensive survey of methods and applications. ACM Comput. Surv. 56(4), 1–39 (2023)
Zheng, X., Pang, T., Du, C., Jiang, J., Lin, M.: Intriguing properties of data attribution on diffusion models. In: The Twelfth International Conference on Learning Representations (2024). https://openreview.net/forum?id=vKViCoKGcB
Zilly, J., Achille, A., Censi, A., Frazzoli, E.: On plasticity, invariance, and mutually frozen weights in sequential task learning. Adv. Neural. Inf. Process. Syst. 34, 12386–12399 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Brokman, J. et al. (2025). MONTRAGE: Monitoring Training for Attribution of Generative Diffusion Models. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15133. Springer, Cham. https://doi.org/10.1007/978-3-031-73226-3_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-73226-3_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73225-6
Online ISBN: 978-3-031-73226-3
eBook Packages: Computer ScienceComputer Science (R0)