MONTRAGE: Monitoring Training for Attribution of Generative Diffusion Models | SpringerLink
Skip to main content

MONTRAGE: Monitoring Training for Attribution of Generative Diffusion Models

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Diffusion models, which revolutionized image generation, are facing challenges related to intellectual property. These challenges arise when a generated image is influenced by copyrighted images from the training data, a plausible scenario in internet-collected data. Hence, pinpointing influential images from the training dataset, a task known as data attribution, becomes crucial for transparency of content origins. We introduce MONTRAGE, a pioneering data attribution method. Unlike existing approaches that analyze the model post-training, MONTRAGE integrates a novel technique to monitor generations throughout the training via internal model representations. It is tailored for customized diffusion models, where training dynamics access is a practical assumption. This approach, coupled with a new loss function, enhances performance while maintaining efficiency. The advantage of MONTRAGE is evaluated in two granularity-levels: Between-concepts and within-concept, outperforming current state-of-the-art methods for high accuracy. This substantiates MONTRAGE’s insights on diffusion models and its contribution towards copyright solutions for AI digital-art.

J. Brokman and O. Hofman—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8465
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    New York Times: AI Image Generators and Copyright Issues.

  2. 2.

    Harvard Business Review: Generative AI and Intellectual Property Challenges.

  3. 3.

    Adobe Blog: FAIR Act to Protect Artists in the Age of AI.

  4. 4.

    Sometimes Markovianity is not admitted, nonetheless, a multi-step gradual process is still the common practice today.

  5. 5.

    The shifted cosine similarity function adjusts the standard cosine similarity range from \([-1,1]\) to \([0,1]\), aligning with the ground truth values for comparison.

  6. 6.

    https://github.com/omerHofBGU/MONTRAGE.

References

  1. The proof and measurement of association between two things (1961)

    Google Scholar 

  2. Achille, A., Rovere, M., Soatto, S.: Critical learning periods in deep neural networks. arXiv preprint arXiv:1711.08856 (2017)

  3. Brokman, J., Betser, R., Turjeman, R., Berkov, T., Cohen, I., Gilboa, G.: Enhancing neural training via a correlated dynamics model. In: The Twelfth International Conference on Learning Representations (2024). https://openreview.net/forum?id=c9xsaASm9L

  4. Carlini, N., et al.: Extracting training data from diffusion models. In: 32nd USENIX Security Symposium (USENIX Security 2023), pp. 5253–5270 (2023)

    Google Scholar 

  5. Chandramoorthy, N., Loukas, A., Gatmiry, K., Jegelka, S.: On the generalization of learning algorithms that do not converge. Adv. Neural. Inf. Process. Syst. 35, 34241–34257 (2022)

    Google Scholar 

  6. Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. Adv. Neural. Inf. Process. Syst. 34, 8780–8794 (2021)

    Google Scholar 

  7. Fan, M., Chen, C., Wang, C., Huang, J.: On the trustworthiness landscape of state-of-the-art generative models: a comprehensive survey. arXiv preprint arXiv:2307.16680 (2023)

  8. Gal, R., et al.: An image is worth one word: personalizing text-to-image generation using textual inversion. arXiv preprint arXiv:2208.01618 (2022)

  9. Gandikota, R., Orgad, H., Belinkov, Y., Materzyńska, J., Bau, D.: Unified concept editing in diffusion models. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 5111–5120 (2024)

    Google Scholar 

  10. Georgiev, K., Vendrow, J., Salman, H., Park, S.M., Madry, A.: The journey, not the destination: how data guides diffusion models. arXiv preprint arXiv:2312.06205 (2023)

  11. Guo, H., Rajani, N., Hase, P., Bansal, M., Xiong, C.: FastIF: scalable influence functions for efficient model interpretation and debugging. In: Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pp. 10333–10350 (2021)

    Google Scholar 

  12. Hara, S., Nitanda, A., Maehara, T.: Data cleansing for models trained with SGD. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  13. Harden, M.: The artchive. https://www.artchive.com/

  14. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Adv. Neural. Inf. Process. Syst. 33, 6840–6851 (2020)

    Google Scholar 

  15. Hu, E.J., et al.: LoRA: low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685 (2021)

  16. Jiang, H.H., et al.: AI art and its impact on artists. In: Proceedings of the 2023 AAAI/ACM Conference on AI, Ethics, and Society, pp. 363–374 (2023)

    Google Scholar 

  17. Kawar, B., et al.: Imagic: text-based real image editing with diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6007–6017 (2023)

    Google Scholar 

  18. Khanna, R., Kim, B., Ghosh, J., Koyejo, S.: Interpreting black box predictions using fisher kernels. In: The 22nd International Conference on Artificial Intelligence and Statistics, pp. 3382–3390. PMLR (2019)

    Google Scholar 

  19. Koh, P.W., Liang, P.: Understanding black-box predictions via influence functions. In: International Conference on Machine Learning, pp. 1885–1894. PMLR (2017)

    Google Scholar 

  20. Kumari, N., Zhang, B., Wang, S.Y., Shechtman, E., Zhang, R., Zhu, J.Y.: Ablating concepts in text-to-image diffusion models. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 22691–22702 (2023)

    Google Scholar 

  21. Kumari, N., Zhang, B., Zhang, R., Shechtman, E., Zhu, J.Y.: Multi-concept customization of text-to-image diffusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1931–1941 (2023)

    Google Scholar 

  22. Kwon, Y., Wu, E., Wu, K., Zou, J.: DataInf: efficiently estimating data influence in loRA-tuned LLMs and diffusion models. In: The Twelfth International Conference on Learning Representations (2024). https://openreview.net/forum?id=9m02ib92Wz

  23. Park, S.M., Georgiev, K., Ilyas, A., Leclerc, G., Mądry, A.: TRAK: attributing model behavior at scale. In: Proceedings of the 40th International Conference on Machine Learning, pp. 27074–27113 (2023)

    Google Scholar 

  24. Pruthi, G., Liu, F., Kale, S., Sundararajan, M.: Estimating training data influence by tracing gradient descent. Adv. Neural. Inf. Process. Syst. 33, 19920–19930 (2020)

    Google Scholar 

  25. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  26. Roich, D., Mokady, R., Bermano, A.H., Cohen-Or, D.: Pivotal tuning for latent-based editing of real images. ACM Trans. Graph. (TOG) 42(1), 1–13 (2022)

    Article  Google Scholar 

  27. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)

    Google Scholar 

  28. Ruiz, N., Li, Y., Jampani, V., Pritch, Y., Rubinstein, M., Aberman, K.: DreamBooth: fine tuning text-to-image diffusion models for subject-driven generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22500–22510 (2023)

    Google Scholar 

  29. Saharia, C., et al.: Photorealistic text-to-image diffusion models with deep language understanding. Adv. Neural. Inf. Process. Syst. 35, 36479–36494 (2022)

    Google Scholar 

  30. Schuhmann, C., et al.: LAION-5B: an open large-scale dataset for training next generation image-text models. Adv. Neural. Inf. Process. Syst. 35, 25278–25294 (2022)

    Google Scholar 

  31. Somepalli, G., Singla, V., Goldblum, M., Geiping, J., Goldstein, T.: Diffusion art or digital forgery? Investigating data replication in diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6048–6058 (2023)

    Google Scholar 

  32. Wang, S.Y., Efros, A.A., Zhu, J.Y., Zhang, R.: Evaluating data attribution for text-to-image models. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7192–7203 (2023)

    Google Scholar 

  33. Yang, L., et al.: Diffusion models: a comprehensive survey of methods and applications. ACM Comput. Surv. 56(4), 1–39 (2023)

    Article  Google Scholar 

  34. Zheng, X., Pang, T., Du, C., Jiang, J., Lin, M.: Intriguing properties of data attribution on diffusion models. In: The Twelfth International Conference on Learning Representations (2024). https://openreview.net/forum?id=vKViCoKGcB

  35. Zilly, J., Achille, A., Censi, A., Frazzoli, E.: On plasticity, invariance, and mutually frozen weights in sequential task learning. Adv. Neural. Inf. Process. Syst. 34, 12386–12399 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Brokman .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 16480 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brokman, J. et al. (2025). MONTRAGE: Monitoring Training for Attribution of Generative Diffusion Models. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15133. Springer, Cham. https://doi.org/10.1007/978-3-031-73226-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73226-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73225-6

  • Online ISBN: 978-3-031-73226-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics