Conformal Prediction and Monte Carlo Inference for Addressing Uncertainty in Cervical Cancer Screening | SpringerLink
Skip to main content

Conformal Prediction and Monte Carlo Inference for Addressing Uncertainty in Cervical Cancer Screening

  • Conference paper
  • First Online:
Uncertainty for Safe Utilization of Machine Learning in Medical Imaging (UNSURE 2024)

Abstract

In the medical domain, where a misdiagnosis can have life-altering ramifications, understanding the certainty of model predictions is an important part of the model development process. However, deep learning approaches suffer from a lack of a native uncertainty metric found in other statistical learning methods. One common technique for uncertainty estimation is the use of Monte-Carlo (MC) dropout at training and inference. Another approach is Conformal Prediction for Uncertainty Quantification (CUQ). This paper will explore these two methods as applied to a cervical cancer screening algorithm currently under development for use in low-resource settings. We find that overall, CUQ and MC inference produce similar uncertainty patterns, that CUQ can aid in model development through class delineation, and that CUQ uncertainty is higher when the model is incorrect, providing further fine-grained information for clinical decisions. Code available here

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 8293
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed, S.R., et al.: Reproducible and clinically translatable deep neural networks for cervical screening. Sci. Rep. 13(1), 21772 (2023)

    Google Scholar 

  2. Angelopoulos, A.N., Bates, S.: A gentle introduction to conformal prediction and distribution-free uncertainty quantification. arXiv preprint arXiv:2107.07511 (2021)

  3. Camarasa, R., et al.: Quantitative comparison of Monte-Carlo dropout uncertainty measures for multi-class segmentation. In: Sudre, C.H., et al. (eds.) UNSURE/GRAIL -2020. LNCS, vol. 12443, pp. 32–41. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60365-6_4

    Chapter  Google Scholar 

  4. Catarino, R., Schäfer, S., Vassilakos, P., Petignat, P., Arbyn, M.: Accuracy of combinations of visual inspection using acetic acid or lugol iodine to detect cervical precancer: a meta-analysis. BJOG Int. J. Obstet. Gynaecol. 125(5), 545–553 (2018)

    Article  Google Scholar 

  5. Desai, K.T., et al.: The development of “automated visual evaluation’’ for cervical cancer screening: the promise and challenges in adapting deep-learning for clinical testing. Int. J. Cancer 150(5), 741–752 (2022)

    Article  Google Scholar 

  6. Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. In: International Conference on Machine Learning, pp. 1050–1059. PMLR (2016)

    Google Scholar 

  7. Hara, K., Saitoh, D., Shouno, H.: Analysis of dropout learning regarded as ensemble learning. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.) ICANN 2016, Part II. LNCS, vol. 9887, pp. 72–79. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44781-0_9

    Chapter  Google Scholar 

  8. Liming, H., et al.: An observational study of deep learning and automated evaluation of cervical images for cancer screening. JNCI J. Natl. Cancer Inst. 111(9), 923–932 (2019)

    Article  Google Scholar 

  9. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4700–4708 (2017)

    Google Scholar 

  10. Kitchener, H.C., Castle, P.E., Cox, J.T.: Chapter 7: achievements and limitations of cervical cytology screening. Vaccine 24(suppl 3), S3/63–70 (2006). Accessed 23 Sept 2019

    Google Scholar 

  11. Lemay, A., et al.: Improving the repeatability of deep learning models with Monte Carlo dropout. npj Digit. Med. 5(1), 174 (2022)

    Article  Google Scholar 

  12. Charles, L., Lemay, A., Chang, K., Höbel, K., Kalpathy-Cramer, J.: Fair conformal predictors for applications in medical imaging. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol, 36, pp. 12008–12016 (2022)

    Google Scholar 

  13. Lycke, K.D., et al.: Agreement on lesion presence and location at colposcopy. J. Low. Genit. Tract Dis. 28(1), 37–42 (2024)

    Google Scholar 

  14. Mehrtens, H., Bucher, T., Brinker, T.J.: Pitfalls of conformal predictions for medical image classification. In: Sudre, C.H., Baumgartner, C.F., Dalca, A., Mehta, R., Qin, C., Wells, W.M. (eds.) UNSURE 2023. LNCS, vol. 14291, pp. 198–207. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-44336-7_20

    Chapter  Google Scholar 

  15. Olsson, H., et al.: Estimating diagnostic uncertainty in artificial intelligence assisted pathology using conformal prediction. Nat. Commun. 13(1), 7761 (2022)

    Article  Google Scholar 

  16. World Health Organization: Cervical Cancer (2024). https://www.who.int/news-room/fact-sheets/detail/cervical-cancer. Accessed 19 June 2024

  17. Pal, A., et al.: Deep metric learning for cervical image classification. IEEE Access 9, 53266–53275 (2021)

    Article  Google Scholar 

  18. Shamsunder, S., Mishra, A., Kumar, A., Beriwal, R., Ahluwalia, C., Das, S.: Diagnostic accuracy of artificial intelligence algorithm incorporated into mobileODT enhanced visual assessment for triaging screen positive women after cervical cancer screening (2022)

    Google Scholar 

  19. Silkensen, S.L., Schiffman, M., Sahasrabuddhe, V., Flanigan, J.S.: Is it time to move beyond visual inspection with acetic acid for cervical cancer screening? (2018)

    Google Scholar 

  20. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  Google Scholar 

  21. Wentzensen, N., et al.: Accuracy and efficiency of deep-learning-based automation of dual stain cytology in cervical cancer screening. JNCI J. Natl. Cancer Inst. 113(1), 72–79 (2021)

    Article  Google Scholar 

  22. Xue, Z., et al.: A demonstration of automated visual evaluation of cervical images taken with a smartphone camera. Int. J. Cancer 147(9), 2416–2423 (2020)

    Article  Google Scholar 

  23. Zar, J.H.: Spearman rank correlation. Encyclopedia of Biostatistics 7 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveer Singh .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 410 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Clark, C. et al. (2025). Conformal Prediction and Monte Carlo Inference for Addressing Uncertainty in Cervical Cancer Screening. In: Sudre, C.H., Mehta, R., Ouyang, C., Qin, C., Rakic, M., Wells, W.M. (eds) Uncertainty for Safe Utilization of Machine Learning in Medical Imaging. UNSURE 2024. Lecture Notes in Computer Science, vol 15167. Springer, Cham. https://doi.org/10.1007/978-3-031-73158-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73158-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73157-0

  • Online ISBN: 978-3-031-73158-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics