Semantic Diversity-Aware Prototype-Based Learning for Unbiased Scene Graph Generation | SpringerLink
Skip to main content

Semantic Diversity-Aware Prototype-Based Learning for Unbiased Scene Graph Generation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

The scene graph generation (SGG) task involves detecting objects within an image and predicting predicates that represent the relationships between the objects. However, in SGG benchmark datasets, each subject-object pair is annotated with a single predicate even though a single predicate may exhibit diverse semantics (i.e., semantic diversity), existing SGG models are trained to predict the one and only predicate for each pair. This in turn results in the SGG models to overlook the semantic diversity that may exist in a predicate, thus leading to biased predictions. In this paper, we propose a novel model-agnostic Semantic Diversity-aware Prototype-based Learning (DPL) framework that enables unbiased predictions based on the understanding of the semantic diversity of predicates. Specifically, DPL learns the regions in the semantic space covered by each predicate to distinguish among the various different semantics that a single predicate can represent. Extensive experiments demonstrate that our proposed model-agnostic DPL framework brings significant performance improvement on existing SGG models, and also effectively understands the semantic diversity of predicates. The code is available at https://github.com/JeonJaeHyeong/DPL.git.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8007
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10009
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Antol, S., et al.: VQA: visual question answering. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2425–2433 (2015)

    Google Scholar 

  2. Chen, T., Yu, W., Chen, R., Lin, L.: Knowledge-embedded routing network for scene graph generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6163–6171 (2019)

    Google Scholar 

  3. Chiou, M.J., Ding, H., Yan, H., Wang, C., Zimmermann, R., Feng, J.: Recovering the unbiased scene graphs from the biased ones. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 1581–1590 (2021)

    Google Scholar 

  4. Chun, S., Oh, S.J., De Rezende, R.S., Kalantidis, Y., Larlus, D.: Probabilistic embeddings for cross-modal retrieval. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8415–8424 (2021)

    Google Scholar 

  5. Dai, B., Zhang, Y., Lin, D.: Detecting visual relationships with deep relational networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3076–3086 (2017)

    Google Scholar 

  6. Dong, X., Gan, T., Song, X., Wu, J., Cheng, Y., Nie, L.: Stacked hybrid-attention and group collaborative learning for unbiased scene graph generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19427–19436 (2022)

    Google Scholar 

  7. Gu, J., Joty, S., Cai, J., Zhao, H., Yang, X., Wang, G.: Unpaired image captioning via scene graph alignments. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10323–10332 (2019)

    Google Scholar 

  8. Gu, J., Zhao, H., Lin, Z., Li, S., Cai, J., Ling, M.: Scene graph generation with external knowledge and image reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1969–1978 (2019)

    Google Scholar 

  9. Hudson, D.A., Manning, C.D.: GQA: a new dataset for real-world visual reasoning and compositional question answering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6700–6709 (2019)

    Google Scholar 

  10. Johnson, J., et al.: Image retrieval using scene graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3668–3678 (2015)

    Google Scholar 

  11. Jung, D., Kim, S., Kim, W.H., Cho, M.: Devil’s on the edges: selective quad attention for scene graph generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18664–18674 (2023)

    Google Scholar 

  12. Kim, K., Yoon, K., In, Y., Moon, J., Kim, D., Park, C.: Adaptive self-training framework for fine-grained scene graph generation (2024)

    Google Scholar 

  13. Kim, K., et al.: LLM4SGG: large language models for weakly supervised scene graph generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 28306–28316 (2024)

    Google Scholar 

  14. Krishna, R., et al.: Visual genome: connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vision 123, 32–73 (2017)

    Article  MathSciNet  Google Scholar 

  15. Li, L., Chen, G., Xiao, J., Yang, Y., Wang, C., Chen, L.: Compositional feature augmentation for unbiased scene graph generation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 21685–21695 (2023)

    Google Scholar 

  16. Li, L., Chen, L., Huang, Y., Zhang, Z., Zhang, S., Xiao, J.: The devil is in the labels: noisy label correction for robust scene graph generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18869–18878 (2022)

    Google Scholar 

  17. Li, R., Zhang, S., Wan, B., He, X.: Bipartite graph network with adaptive message passing for unbiased scene graph generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11109–11119 (2021)

    Google Scholar 

  18. Li, W., Zhang, H., Bai, Q., Zhao, G., Jiang, N., Yuan, X.: PPDL: predicate probability distribution based loss for unbiased scene graph generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19447–19456 (2022)

    Google Scholar 

  19. Lin, X., Ding, C., Zeng, J., Tao, D.: GPS-Net: graph property sensing network for scene graph generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3746–3753 (2020)

    Google Scholar 

  20. Lu, C., Krishna, R., Bernstein, M., Fei-Fei, L.: Visual relationship detection with language priors. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 852–869. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_51

  21. Min, Y., Wu, A., Deng, C.: Environment-invariant curriculum relation learning for fine-grained scene graph generation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13296–13307 (2023)

    Google Scholar 

  22. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  23. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  24. Sudhakaran, G., Dhami, D.S., Kersting, K., Roth, S.: Vision relation transformer for unbiased scene graph generation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 21882–21893 (2023)

    Google Scholar 

  25. Suhail, M., et al.: Energy-based learning for scene graph generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13936–13945 (2021)

    Google Scholar 

  26. Tang, K., Niu, Y., Huang, J., Shi, J., Zhang, H.: Unbiased scene graph generation from biased training. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3716–3725 (2020)

    Google Scholar 

  27. Tang, K., Zhang, H., Wu, B., Luo, W., Liu, W.: Learning to compose dynamic tree structures for visual contexts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6619–6628 (2019)

    Google Scholar 

  28. Teney, D., Liu, L., van Den Hengel, A.: Graph-structured representations for visual question answering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2017)

    Google Scholar 

  29. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1492–1500 (2017)

    Google Scholar 

  30. Xu, D., Zhu, Y., Choy, C.B., Fei-Fei, L.: Scene graph generation by iterative message passing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5410–5419 (2017)

    Google Scholar 

  31. Yan, S., et al.: PCPL: predicate-correlation perception learning for unbiased scene graph generation. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 265–273 (2020)

    Google Scholar 

  32. Yang, J., Lu, J., Lee, S., Batra, D., Parikh, D.: Graph R-CNN for scene graph generation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 690–706. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_41

    Chapter  Google Scholar 

  33. Yang, X., Tang, K., Zhang, H., Cai, J.: Auto-encoding scene graphs for image captioning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10685–10694 (2019)

    Google Scholar 

  34. Yoon, K., Kim, K., Moon, J., Park, C.: Unbiased heterogeneous scene graph generation with relation-aware message passing neural network. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37, pp. 3285–3294 (2023)

    Google Scholar 

  35. Yu, J., Chai, Y., Wang, Y., Hu, Y., Wu, Q.: CogTree: cognition tree loss for unbiased scene graph generation. arXiv preprint arXiv:2009.07526 (2020)

  36. Zareian, A., Karaman, S., Chang, S.-F.: Bridging knowledge graphs to generate scene graphs. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12368, pp. 606–623. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58592-1_36

    Chapter  Google Scholar 

  37. Zellers, R., Yatskar, M., Thomson, S., Choi, Y.: Neural motifs: scene graph parsing with global context. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5831–5840 (2018)

    Google Scholar 

  38. Zhang, A., et al.: Fine-grained scene graph generation with data transfer. In: Avidan, S., Brostow, G., Cisse, M., Farinella, G.M., Hassner, T. (eds.) Computer Vision – ECCV 2022. ECCV 2022. LNCS, vol. 13687, pp. 409–424. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19812-0_24

  39. Zhang, H., Kyaw, Z., Chang, S.F., Chua, T.S.: Visual translation embedding network for visual relation detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5532–5540 (2017)

    Google Scholar 

  40. Zheng, C., Lyu, X., Gao, L., Dai, B., Song, J.: Prototype-based embedding network for scene graph generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22783–22792 (2023)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (RS-2024-00335098), Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2022-0-00077), and National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT (NRF-2022M3J6A1063021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanyoung Park .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 653 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jeon, J., Kim, K., Yoon, K., Park, C. (2025). Semantic Diversity-Aware Prototype-Based Learning for Unbiased Scene Graph Generation. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15126. Springer, Cham. https://doi.org/10.1007/978-3-031-73113-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73113-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73112-9

  • Online ISBN: 978-3-031-73113-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics