Affine Steerers for Structured Keypoint Description | SpringerLink
Skip to main content

Affine Steerers for Structured Keypoint Description

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15144))

Included in the following conference series:

  • 216 Accesses

Abstract

We propose a way to train deep learning based keypoint descriptors that makes them approximately equivariant for locally affine transformations of the image plane. The main idea is to use the representation theory of GL(2) to generalize the recently introduced concept of steerers from rotations to affine transformations. Affine steerers give high control over how keypoint descriptions transform under image transformations. We demonstrate the potential of using this control for image matching. Finally, we propose a way to finetune keypoint descriptors with a set of steerers on upright images and obtain state-of-the-art results on several standard benchmarks. Code will be published at github.com/georg-bn/affine-steerers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8465
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In practice, image warps corresponding to camera motions are piecewise continuous and piecewise differentiable. The discontinuities stem from motion boundaries, which we will ignore in the theoretical part of this paper.

  2. 2.

    An irrep on V is a representation that does not leave any proper subspace \(W\subset V\) invariant. Irreps can be thought of as fundamental building blocks of representations as many general representations can be decomposed into irreps. However, for \(\textrm{GL}(2)\), not all representations can be built out of its irreps. The standard counterexample is  [63, Example 4.11].

References

  1. Balntas, V., Lenc, K., Vedaldi, A., Mikolajczyk, K.: HPatches: a benchmark and evaluation of handcrafted and learned local descriptors. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5173–5182 (2017)

    Google Scholar 

  2. Balntas, V., Riba, E., Ponsa, D., Mikolajczyk, K.: Learning local feature descriptors with triplets and shallow convolutional neural networks. In: BMVC (2016)

    Google Scholar 

  3. Barath, D., Mishkin, D., Cavalli, L., Sarlin, P.E., Hruby, P., Pollefeys, M.: Affineglue: joint matching and robust estimation. arXiv preprint arXiv:2307.15381 (2023)

  4. Barath, D., Polic, M., Förstner, W., Sattler, T., Pajdla, T., Kukelova, Z.: Making affine correspondences work in camera geometry computation. In: European Conference on Computer Vision (ECCV), pp. 723–740 (2020)

    Google Scholar 

  5. Barroso-Laguna, A., Riba, E., Ponsa, D., Mikolajczyk, K.: Key.Net: keypoint detection by handcrafted and learned CNN filters. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5836–5844 (2019)

    Google Scholar 

  6. Bentolila, J., Francos, J.M.: Conic epipolar constraints from affine correspondences. Comput. Vis. Image Underst. (CVIU) 122, 105–114 (2014)

    Article  Google Scholar 

  7. Bruintjes, R.J., Motyka, T., van Gemert, J.: What affects learned equivariance in deep image recognition models? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 4838–4846 (2023)

    Google Scholar 

  8. Brynte, L., Iglesias, J.P., Olsson, C., Kahl, F.: Learning structure-from-motion with graph attention networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2024)

    Google Scholar 

  9. Bökman, G., Edstedt, J., Felsberg, M., Kahl, F.: Steerers: a framework for rotation equivariant keypoint descriptors. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2024)

    Google Scholar 

  10. Bökman, G., Kahl, F.: A case for using rotation invariant features in state of the art feature matchers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5110–5119 (2022)

    Google Scholar 

  11. Bökman, G., Kahl, F.: Investigating how ReLU-networks encode symmetries. In: Thirty-Seventh Conference on Neural Information Processing Systems (2023). https://openreview.net/forum?id=8lbFwpebeu

  12. Bökman, G., Kahl, F., Flinth, A.: ZZ-Net: a universal rotation equivariant architecture for 2D point clouds. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2022)

    Google Scholar 

  13. Cao, C., Fu, Y.: Improving transformer-based image matching by cascaded capturing spatially informative keypoints. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 12129–12139 (2023)

    Google Scholar 

  14. Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9650–9660 (2021)

    Google Scholar 

  15. Chen, H., et al.: Learning to match features with seeded graph matching network. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6301–6310 (2021)

    Google Scholar 

  16. Cohen, T., Welling, M.: Group equivariant convolutional networks. In: International Conference on Machine Learning, pp. 2990–2999. PMLR (2016)

    Google Scholar 

  17. Cohen, T.S., Welling, M.: Transformation properties of learned visual representations. ICLR 2015 arXiv:1412.7659 (2014)

  18. DeTone, D., Malisiewicz, T., Rabinovich, A.: Superpoint: self-supervised interest point detection and description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 224–236 (2018)

    Google Scholar 

  19. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (2021). https://openreview.net/forum?id=YicbFdNTTy

  20. Dusmanu, M., et al.: D2-Net: a trainable CNN for joint detection and description of local features. In: Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  21. Edstedt, J., Athanasiadis, I., Wadenbäck, M., Felsberg, M.: DKM: dense kernelized feature matching for geometry estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (2023)

    Google Scholar 

  22. Edstedt, J., Bökman, G., Wadenbäck, M., Felsberg, M.: DeDoDe: detect, don’t describe – describe, don’t detect for local feature matching. In: 2024 International Conference on 3D Vision (3DV). IEEE (2024)

    Google Scholar 

  23. Edstedt, J., Sun, Q., Bökman, G., Wadenbäck, M., Felsberg, M.: RoMa: robust dense feature matching. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2024)

    Google Scholar 

  24. Felsberg, M., Sommer, G.: Image features based on a new approach to 2D rotation invariant quadrature filters. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 369–383. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47969-4_25

    Chapter  Google Scholar 

  25. Forssén, P.E., Lowe, D.G.: Shape descriptors for maximally stable extremal regions. In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–8. IEEE (2007)

    Google Scholar 

  26. Garrido, Q., Assran, M., Ballas, Nicolas Bardes, A., Najman, L., LeCun, Y.: Learning and leveraging world models in visual representation learning. arXiv preprint arXiv:2403.00504 (2024)

  27. Garrido, Q., Najman, L., Lecun, Y.: Self-supervised learning of split invariant equivariant representations. In: International Conference on Machine Learning. PMLR (2023)

    Google Scholar 

  28. Giang, K.T., Song, S., Jo, S.: TopicFM: robust and interpretable topic-assisted feature matching. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 37 (2023)

    Google Scholar 

  29. Gleize, P., Wang, W., Feiszli, M.: SiLK: simple learned keypoints. In: ICCV (2023)

    Google Scholar 

  30. Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised learning. In: Advances in Neural Information Processing Systems, vol. 33, pp. 21271–21284 (2020)

    Google Scholar 

  31. Gruver, N., Finzi, M.A., Goldblum, M., Wilson, A.G.: The lie derivative for measuring learned equivariance. In: The Eleventh International Conference on Learning Representations (2023). https://openreview.net/forum?id=JL7Va5Vy15J

  32. Gupta, S., Robinson, J., Lim, D., Villar, S., Jegelka, S.: Structuring representation geometry with rotationally equivariant contrastive learning. arXiv preprint arXiv:2306.13924 (2023)

  33. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 2, pp. 1735–1742. IEEE (2006)

    Google Scholar 

  34. Han, J., Ding, J., Xue, N., Xia, G.S.: Redet: a rotation-equivariant detector for aerial object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2786–2795 (2021)

    Google Scholar 

  35. He, K., Chen, X., Xie, S., Li, Y., Dollár, P., Girshick, R.: Masked autoencoders are scalable vision learners. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16000–16009 (2022)

    Google Scholar 

  36. Howard, A., Trulls, E., Yi, K.M., Mishkin, D., Dane, S., Jin, Y.: Image matching challenge 2022 (2022). https://kaggle.com/competitions/image-matching-challenge-2022

  37. Huang, D., et al.: Adaptive assignment for geometry aware local feature matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5425–5434 (2023)

    Google Scholar 

  38. Jonsson, E., Felsberg, M.: Efficient computation of channel-coded feature maps through piecewise polynomials. Image Vis. Comput. 27(11), 1688–1694 (2009)

    Article  Google Scholar 

  39. Koyama, M., Fukumizu, K., Hayashi, K., Miyato, T.: Neural fourier transform: a general approach to equivariant representation learning. In: The Twelfth International Conference on Learning Representations (2024). https://openreview.net/forum?id=eOCvA8iwXH

  40. Lawrence, H., Harris, M.T.: Learning polynomial problems with \(sl(2, \mathbb{R})\) equivariance. In: The Twelfth International Conference on Learning Representations (2023)

    Google Scholar 

  41. Lee, J., Jeong, Y., Cho, M.: Self-supervised learning of image scale and orientation. In: 31st British Machine Vision Conference 2021, BMVC 2021, Virtual Event, UK. BMVA Press (2021). https://www.bmvc2021-virtualconference.com/programme/accepted-papers/

  42. Lee, J., Kim, B., Cho, M.: Self-supervised equivariant learning for oriented keypoint detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4847–4857 (2022)

    Google Scholar 

  43. Lee, J., Kim, B., Kim, S., Cho, M.: Learning rotation-equivariant features for visual correspondence. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21887–21897 (2023)

    Google Scholar 

  44. Lenc, K., Vedaldi, A.: Understanding image representations by measuring their equivariance and equivalence. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  45. Li, Z., Snavely, N.: Megadepth: learning single-view depth prediction from internet photos. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2041–2050 (2018)

    Google Scholar 

  46. Lindenberger, P., Sarlin, P.E., Pollefeys, M.: LightGlue: local feature matching at light speed. In: IEEE International Conference on Computer Vision (ICCV) (2023)

    Google Scholar 

  47. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision (IJCV) 60, 91–110 (2004)

    Article  Google Scholar 

  48. Luo, Z., et al.: Contextdesc: local descriptor augmentation with cross-modality context. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2527–2536 (2019)

    Google Scholar 

  49. MacDonald, L.E., Ramasinghe, S., Lucey, S.: Enabling equivariance for arbitrary lie groups. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8183–8192 (2022)

    Google Scholar 

  50. Mao, R., Bai, C., An, Y., Zhu, F., Lu, C.: 3DG-STFM: 3D geometric guided student-teacher feature matching. In: Proceedings of European Conference on Computer Vision (ECCV) (2022)

    Google Scholar 

  51. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide-baseline stereo from maximally stable extremal regions. Image Vis. Comput. 22(10), 761–767 (2004)

    Article  Google Scholar 

  52. Matas, J., Obdrzalek, T., Chum, O.: Local affine frames for wide-baseline stereo. In: 2002 International Conference on Pattern Recognition, vol. 4, pp. 363–366. IEEE (2002)

    Google Scholar 

  53. Melnyk, P., Felsberg, M., Wadenbäck, M.: Steerable 3D spherical neurons. In: Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., Sabato, S. (eds.) Proceedings of the 39th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 162, pp. 15330–15339. PMLR (2022). https://proceedings.mlr.press/v162/melnyk22a.html

  54. Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors. Int. J. Comput. Vision (IJCV) 60, 63–86 (2004)

    Article  Google Scholar 

  55. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. (T-PAMI) 27(10), 1615–1630 (2005)

    Google Scholar 

  56. Mironenco, M., Forré, P.: Lie group decompositions for equivariant neural networks. In: The Twelfth International Conference on Learning Representations (2024). https://openreview.net/forum?id=p34fRKp8qA

  57. Mishchuk, A., Mishkin, D., Radenovic, F., Matas, J.: Working hard to know your neighbor’s margins: local descriptor learning loss. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  58. Mishkin, D., Matas, J., Perdoch, M., Lenc, K.: WxBS: wide baseline stereo generalizations. arXiv preprint arXiv:1504.06603 (2015)

  59. Mishkin, D., Radenovic, F., Matas, J.: Repeatability is not enough: learning affine regions via discriminability. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 284–300 (2018)

    Google Scholar 

  60. Mishkin, D., Radenović, F., Matas, J.: Repeatability is not enough: learning affine regions via discriminability. In: European Conference on Computer Vision (ECCV), pp. 287–304 (2018)

    Google Scholar 

  61. Ni, J., et al.: Pats: patch area transportation with subdivision for local feature matching. In: The IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR) (2023)

    Google Scholar 

  62. Obdržálek, Š, Matas, J.: Local affine frames for image retrieval. In: Lew, M.S., Sebe, N., Eakins, J.P. (eds.) CIVR 2002. LNCS, vol. 2383, pp. 318–327. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45479-9_34

    Chapter  Google Scholar 

  63. Olver, P.J.: Classical invariant theory. No. 44 in London Mathematical Society Student Texts, Cambridge University Press (1999)

    Google Scholar 

  64. Olver, P.J., Qu, C., Yang, Y.: Feature matching and heat flow in centro-affine geometry. SIGMA. Symmetry Integrability Geom. Methods Appl. 16, 093 (2020). https://doi.org/10.3842/SIGMA.2020.093. https://www.emis.de/journals/SIGMA/2020/093/

  65. Oquab, M., et al.: DINOv2: learning robust visual features without supervision. arXiv:2304.07193 (2023)

  66. Park, J.Y., Biza, O., Zhao, L., van de Meent, J.W., Walters, R.: Learning symmetric embeddings for equivariant world models. arXiv preprint arXiv:2204.11371 (2022)

  67. Potje, G., Cadar, F., Araujo, A., Martins, R., Nascimento, E.R.: Xfeat: accelerated features for lightweight image matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2682–2691 (2024)

    Google Scholar 

  68. Revaud, J., De Souza, C., Humenberger, M., Weinzaepfel, P.: R2D2: reliable and repeatable detector and descriptor. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 32 (2019)

    Google Scholar 

  69. Santellani, E., Sormann, C., Rossi, M., Kuhn, A., Fraundorfer, F.: S-trek: sequential translation and rotation equivariant keypoints for local feature extraction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9728–9737 (2023)

    Google Scholar 

  70. Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A.: SuperGlue: learning feature matching with graph neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  71. Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A.: Superglue: learning feature matching with graph neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4938–4947 (2020)

    Google Scholar 

  72. Shakerinava, M., Mondal, A.K., Ravanbakhsh, S.: Structuring representations using group invariants. In: Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., Oh, A. (eds.) Advances in Neural Information Processing Systems, vol. 35, pp. 34162–34174. Curran Associates, Inc. (2022). https://proceedings.neurips.cc/paper_files/paper/2022/file/dcd297696d0bb304ba426b3c5a679c37-Paper-Conference.pdf

  73. Shi, Y., Cai, J.X., Shavit, Y., Mu, T.J., Feng, W., Zhang, K.: Clustergnn: cluster-based coarse-to-fine graph neural network for efficient feature matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12517–12526 (2022)

    Google Scholar 

  74. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015)

    Google Scholar 

  75. Stoken, A., Fisher, K.: Find my astronaut photo: automated localization and georectification of astronaut photography. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 6196–6205 (2023)

    Google Scholar 

  76. Sun, J., Shen, Z., Wang, Y., Bao, H., Zhou, X.: LoFTR: detector-free local feature matching with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8922–8931 (2021)

    Google Scholar 

  77. Tian, Y., Barroso Laguna, A., Ng, T., Balntas, V., Mikolajczyk, K.: HyNet: learning local descriptor with hybrid similarity measure and triplet loss. In: Advances in Neural Information Processing Systems, vol. 33, pp. 7401–7412 (2020)

    Google Scholar 

  78. Tian, Y., Yu, X., Fan, B., Wu, F., Heijnen, H., Balntas, V.: Sosnet: second order similarity regularization for local descriptor learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11016–11025 (2019)

    Google Scholar 

  79. Truong, P., Danelljan, M., Gool, L.V., Timofte, R.: GOCor: bringing globally optimized correspondence volumes into your neural network. In: Advances in Neural Information Processing Systems, vol. 33 (2020)

    Google Scholar 

  80. Truong, P., Danelljan, M., Timofte, R.: GLU-Net: global-local universal network for dense flow and correspondences. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6258–6268 (2020)

    Google Scholar 

  81. Truong, P., Danelljan, M., Timofte, R., Van Gool, L.: PDC-Net+: enhanced probabilistic dense correspondence network. IEEE Trans. Pattern Anal. Mach. Intell. 45(8), 10247–10266 (2023)

    Article  Google Scholar 

  82. Truong, P., Danelljan, M., Van Gool, L., Timofte, R.: Learning accurate dense correspondences and when to trust them. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5714–5724 (2021)

    Google Scholar 

  83. Tuznik, S.L., Olver, P.J., Tannenbaum, A.: Equi-affine differential invariants for invariant feature point detection. Eur. J. Appl. Math. 31(2), 277–296 (2020). https://doi.org/10.1017/S0956792519000020

    Article  MathSciNet  Google Scholar 

  84. Tyszkiewicz, M., Fua, P., Trulls, E.: Disk: learning local features with policy gradient. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 33, pp. 14254–14265 (2020)

    Google Scholar 

  85. Wang, Q., Zhang, J., Yang, K., Peng, K., Stiefelhagen, R.: MatchFormer: interleaving attention in transformers for feature matching. In: Asian Conference on Computer Vision (2022)

    Google Scholar 

  86. Weiler, M., Cesa, G.: General e (2)-equivariant steerable CNNs. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  87. Yan, P., Tan, Y., Xiong, S., Tai, Y., Li, Y.: Learning soft estimator of keypoint scale and orientation with probabilistic covariant loss. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19406–19415 (2022)

    Google Scholar 

  88. Yi, K.M., Trulls, E., Lepetit, V., Fua, P.: LIFT: learned invariant feature transform. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 467–483. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_28

    Chapter  Google Scholar 

  89. Yu, G., Morel, J.M.: ASIFT: an algorithm for fully affine invariant comparison. Image Process. On Line 1, 11–38 (2011)

    Google Scholar 

  90. Yu, J., Chang, J., He, J., Zhang, T., Yu, J., Feng, W.: ASTR: adaptive spot-guided transformer for consistent local feature matching. In: The IEEE/CVF Computer Vision and Pattern Recognition Conference (CVPR) (2023)

    Google Scholar 

  91. Zhao, X., Wu, X., Chen, W., Chen, P.C.Y., Xu, Q., Li, Z.: Aliked: a lighter keypoint and descriptor extraction network via deformable transformation. IEEE Trans. Instrum. Meas. 72, 1–16 (2023)

    Google Scholar 

  92. Zhao, X., Wu, X., Miao, J., Chen, W., Chen, P.C., Li, Z.: Alike: accurate and lightweight keypoint detection and descriptor extraction. IEEE Trans. Multimedia 25, 3101–3112 (2022)

    Article  Google Scholar 

  93. Zhou, J., et al.: Image BERT pre-training with online tokenizer. In: International Conference on Learning Representations (2022). https://openreview.net/forum?id=ydopy-e6Dg

  94. Zhu, S., Liu, X.: PMatch: paired masked image modeling for dense geometric matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2023)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Wallenberg Artificial Intelligence, Autonomous Systems and Software Program (WASP), funded by the Knut and Alice Wallenberg Foundation and by the strategic research environment ELLIIT, funded by the Swedish government. The computational resources were provided by the National Academic Infrastructure for Supercomputing in Sweden (NAISS) at C3SE, partially funded by the Swedish Research Council through grant agreement no. 2022-06725, and by the Berzelius resource, provided by the Knut and Alice Wallenberg Foundation at the National Supercomputer Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg Bökman .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 174 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bökman, G., Edstedt, J., Felsberg, M., Kahl, F. (2025). Affine Steerers for Structured Keypoint Description. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15144. Springer, Cham. https://doi.org/10.1007/978-3-031-73016-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73016-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73015-3

  • Online ISBN: 978-3-031-73016-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics