Abstract
Face swapping has gained significant attention for its varied applications. Most previous face swapping approaches have relied on the seesaw game training scheme, also known as the target-oriented approach. However, this often leads to instability in model training and results in undesired samples with blended identities due to the target identity leakage problem. Source-oriented methods achieve more stable training with self-reconstruction objective but often fail to accurately reflect target image’s skin color and illumination. This paper introduces the Shape Agnostic Masked AutoEncoder (SAMAE) training scheme, a novel self-supervised approach that combines the strengths of both target-oriented and source-oriented approaches. Our training scheme addresses the limitations of traditional training methods by circumventing the conventional seesaw game and introducing clear ground truth through its self-reconstruction training regime. Our model effectively mitigates identity leakage and reflects target albedo and illumination through learned disentangled identity and non-identity features. Additionally, we closely tackle the shape misalignment and volume discrepancy problems with new techniques, including perforation confusion and random mesh scaling. SAMAE establishes a new state-of-the-art, surpassing other baseline methods, preserving both identity and non-identity attributes without sacrificing on either aspect.
J. Lee and J. Hyung—Equal contributions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
In most 3DMMs, as they adopt an orthographic camera model, there is no z-axis translation \(t_{z}\).
References
Bühler, M.C., Meka, A., Li, G., Beeler, T., Hilliges, O.: Varitex: variational neural face textures. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13890–13899 (2021)
Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: VGGFace2: a dataset for recognising faces across pose and age. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 67–74. IEEE (2018)
Chen, R., Chen, X., Ni, B., Ge, Y.: Simswap: an efficient framework for high fidelity face swapping. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 2003–2011 (2020)
Digital-nomad cheng: Dense iris landmarks. https://github.com/digital-nomad-cheng/Iris_Landmarks_PyTorch. Accessed 07 Mar 2024
Deepfakes: Deepfakes. https://github.com/deepfakes/faceswap. Accessed 07 Mar 2024
Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: additive angular margin loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4690–4699 (2019)
Deng, Y., Yang, J., Chen, D., Wen, F., Tong, X.: Disentangled and controllable face image generation via 3D imitative-contrastive learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5154–5163 (2020)
Deng, Y., Yang, J., Xu, S., Chen, D., Jia, Y., Tong, X.: Accurate 3D face reconstruction with weakly-supervised learning: from single image to image set. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)
Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. In: Advances in Neural Information Processing Systems, vol. 34, pp. 8780–8794 (2021)
Feng, Y., Feng, H., Black, M.J., Bolkart, T.: Learning an animatable detailed 3D face model from in-the-wild images. ACM Trans. Graph. (ToG) 40(4), 1–13 (2021)
Gao, G., Huang, H., Fu, C., Li, Z., He, R.: Information bottleneck disentanglement for identity swapping. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3404–3413 (2021)
Ghosh, P., Gupta, P.S., Uziel, R., Ranjan, A., Black, M.J., Bolkart, T.: GIF: generative interpretable faces. In: 2020 International Conference on 3D Vision (3DV), pp. 868–878. IEEE (2020)
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27 (2014)
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851 (2020)
Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43
Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)
Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of styleGAN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8110–8119 (2020)
Kim, J., Lee, J., Zhang, B.T.: Smooth-swap: a simple enhancement for face-swapping with smoothness. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10779–10788 (2022)
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)
Kowalski, M., Garbin, S.J., Estellers, V., Baltrušaitis, T., Johnson, M., Shotton, J.: CONFIG: controllable neural face image generation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 299–315. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_18
Lee, J., Kim, T., Park, S., Lee, Y., Choo, J.: Robustswap: a simple yet robust face swapping model against attribute leakage. arXiv preprint arXiv:2303.15768 (2023)
Li, L., Bao, J., Yang, H., Chen, D., Wen, F.: Faceshifter: towards high fidelity and occlusion aware face swapping. arXiv preprint arXiv:1912.13457 (2019)
Li, T., Bolkart, T., Black, M.J., Li, H., Romero, J.: Learning a model of facial shape and expression from 4D scans. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 36(6), 194:1–194:17 (2017). https://doi.org/10.1145/3130800.3130813
Liu, Y., Shu, Z., Li, Y., Lin, Z., Zhang, R., Kung, S.Y.: 3D-FM GAN: towards 3D-controllable face manipulation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13675, pp. 107–125. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19784-0_7
Liu, Z., et al.: Fine-grained face swapping via regional GAN inversion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8578–8587 (2023)
Nagrani, A., Chung, J.S., Xie, W., Zisserman, A.: Voxceleb: large-scale speaker verification in the wild. Comput. Speech Lang. 60, 101027 (2020)
Nirkin, Y., Keller, Y., Hassner, T.: FSGAN: subject agnostic face swapping and reenactment. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7184–7193 (2019)
Paysan, P., Knothe, R., Amberg, B., Romdhani, S., Vetter, T.: A 3D face model for pose and illumination invariant face recognition. In: 2009 sixth IEEE International Conference on Advanced Video and Signal Based Surveillance, pp. 296–301. IEEE (2009)
Perov, I., et al.: Deepfacelab: integrated, flexible and extensible face-swapping framework. arXiv preprint arXiv:2005.05535 (2020)
Ren, X., Chen, X., Yao, P., Shum, H.Y., Wang, B.: Reinforced disentanglement for face swapping without skip connection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 20665–20675 (2023)
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)
Shiohara, K., Yang, X., Taketomi, T.: Blendface: re-designing identity encoders for face-swapping. arXiv preprint arXiv:2307.10854 (2023)
Siarohin, A., Lathuilière, S., Tulyakov, S., Ricci, E., Sebe, N.: First order motion model for image animation. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13(4), 376–380 (1991). https://doi.org/10.1109/34.88573
Vu, T., Do, K., Nguyen, K., Than, K.: Face swapping as a simple arithmetic operation. arXiv preprint arXiv:2211.10812 (2022)
Wang, T.C., Mallya, A., Liu, M.Y.: One-shot free-view neural talking-head synthesis for video conferencing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10039–10049 (2021)
Wang, Y., Yang, D., Bremond, F., Dantcheva, A.: Latent image animator: learning to animate images via latent space navigation. arXiv preprint arXiv:2203.09043 (2022)
Wang, Y., et al.: Hififace: 3D shape and semantic prior guided high fidelity face swapping. arXiv preprint arXiv:2106.09965 (2021)
Wang, Z., Zhang, J., Chen, R., Wang, W., Luo, P.: Restoreformer: high-quality blind face restoration from undegraded key-value pairs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17512–17521 (2022)
Xu, Y., Deng, B., Wang, J., Jing, Y., Pan, J., He, S.: High-resolution face swapping via latent semantics disentanglement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7642–7651 (2022)
Xu, Z., et al.: StyleSwap: style-based generator empowers robust face swapping. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13674, pp. 661–677. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19781-9_38
Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., Sang, N.: Bisenet: bilateral segmentation network for real-time semantic segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 325–341 (2018)
Yuan, G., Li, M., Zhang, Y., Zheng, H.: Reliableswap: boosting general face swapping via reliable supervision. arXiv preprint arXiv:2306.05356 (2023)
Zakharov, E., Shysheya, A., Burkov, E., Lempitsky, V.: Few-shot adversarial learning of realistic neural talking head models. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9459–9468 (2019)
Zhao, W., Rao, Y., Shi, W., Liu, Z., Zhou, J., Lu, J.: Diffswap: high-fidelity and controllable face swapping via 3D-aware masked diffusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8568–8577 (2023)
Zhu, Y., Li, Q., Wang, J., Xu, C.Z., Sun, Z.: One shot face swapping on megapixels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4834–4844 (2021)
Acknowledgements
This work was supported by Institute for Information & communications Technology Promotion(IITP) grant funded by the Korea government(MSIT) (No. RS-2019-II190075 Artificial Intelligence Graduate School Program(KAIST)), the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2022R1A2B5B02001913), and KAIST-NAVER hypercreative AI center.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Ethical Considerations
Face swapping is useful in areas like digital resurrection and telepresence but also poses risks of privacy invasion and misinformation. We are dedicated to prevent the potential misuse our model, and plan to release our model exclusively for research purposes. Additionally, we will provide a benchmark dataset to support research in face forensics and privacy protection.
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Lee, J., Hyung, J., Jung, S., Choo, J. (2025). SelfSwapper: Self-supervised Face Swapping via Shape Agnostic Masked AutoEncoder. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15113. Springer, Cham. https://doi.org/10.1007/978-3-031-73001-6_22
Download citation
DOI: https://doi.org/10.1007/978-3-031-73001-6_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-73000-9
Online ISBN: 978-3-031-73001-6
eBook Packages: Computer ScienceComputer Science (R0)