SelfSwapper: Self-supervised Face Swapping via Shape Agnostic Masked AutoEncoder | SpringerLink
Skip to main content

SelfSwapper: Self-supervised Face Swapping via Shape Agnostic Masked AutoEncoder

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15113))

Included in the following conference series:

  • 54 Accesses

Abstract

Face swapping has gained significant attention for its varied applications. Most previous face swapping approaches have relied on the seesaw game training scheme, also known as the target-oriented approach. However, this often leads to instability in model training and results in undesired samples with blended identities due to the target identity leakage problem. Source-oriented methods achieve more stable training with self-reconstruction objective but often fail to accurately reflect target image’s skin color and illumination. This paper introduces the Shape Agnostic Masked AutoEncoder (SAMAE) training scheme, a novel self-supervised approach that combines the strengths of both target-oriented and source-oriented approaches. Our training scheme addresses the limitations of traditional training methods by circumventing the conventional seesaw game and introducing clear ground truth through its self-reconstruction training regime. Our model effectively mitigates identity leakage and reflects target albedo and illumination through learned disentangled identity and non-identity features. Additionally, we closely tackle the shape misalignment and volume discrepancy problems with new techniques, including perforation confusion and random mesh scaling. SAMAE establishes a new state-of-the-art, surpassing other baseline methods, preserving both identity and non-identity attributes without sacrificing on either aspect.

J. Lee and J. Hyung—Equal contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8465
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In most 3DMMs, as they adopt an orthographic camera model, there is no z-axis translation \(t_{z}\).

References

  1. Bühler, M.C., Meka, A., Li, G., Beeler, T., Hilliges, O.: Varitex: variational neural face textures. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13890–13899 (2021)

    Google Scholar 

  2. Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: VGGFace2: a dataset for recognising faces across pose and age. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 67–74. IEEE (2018)

    Google Scholar 

  3. Chen, R., Chen, X., Ni, B., Ge, Y.: Simswap: an efficient framework for high fidelity face swapping. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 2003–2011 (2020)

    Google Scholar 

  4. Digital-nomad cheng: Dense iris landmarks. https://github.com/digital-nomad-cheng/Iris_Landmarks_PyTorch. Accessed 07 Mar 2024

  5. Deepfakes: Deepfakes. https://github.com/deepfakes/faceswap. Accessed 07 Mar 2024

  6. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: additive angular margin loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4690–4699 (2019)

    Google Scholar 

  7. Deng, Y., Yang, J., Chen, D., Wen, F., Tong, X.: Disentangled and controllable face image generation via 3D imitative-contrastive learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5154–5163 (2020)

    Google Scholar 

  8. Deng, Y., Yang, J., Xu, S., Chen, D., Jia, Y., Tong, X.: Accurate 3D face reconstruction with weakly-supervised learning: from single image to image set. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  9. Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. In: Advances in Neural Information Processing Systems, vol. 34, pp. 8780–8794 (2021)

    Google Scholar 

  10. Feng, Y., Feng, H., Black, M.J., Bolkart, T.: Learning an animatable detailed 3D face model from in-the-wild images. ACM Trans. Graph. (ToG) 40(4), 1–13 (2021)

    Article  Google Scholar 

  11. Gao, G., Huang, H., Fu, C., Li, Z., He, R.: Information bottleneck disentanglement for identity swapping. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3404–3413 (2021)

    Google Scholar 

  12. Ghosh, P., Gupta, P.S., Uziel, R., Ranjan, A., Black, M.J., Bolkart, T.: GIF: generative interpretable faces. In: 2020 International Conference on 3D Vision (3DV), pp. 868–878. IEEE (2020)

    Google Scholar 

  13. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  14. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851 (2020)

    Google Scholar 

  15. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  16. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)

    Google Scholar 

  17. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of styleGAN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8110–8119 (2020)

    Google Scholar 

  18. Kim, J., Lee, J., Zhang, B.T.: Smooth-swap: a simple enhancement for face-swapping with smoothness. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10779–10788 (2022)

    Google Scholar 

  19. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  20. Kowalski, M., Garbin, S.J., Estellers, V., Baltrušaitis, T., Johnson, M., Shotton, J.: CONFIG: controllable neural face image generation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 299–315. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_18

    Chapter  Google Scholar 

  21. Lee, J., Kim, T., Park, S., Lee, Y., Choo, J.: Robustswap: a simple yet robust face swapping model against attribute leakage. arXiv preprint arXiv:2303.15768 (2023)

  22. Li, L., Bao, J., Yang, H., Chen, D., Wen, F.: Faceshifter: towards high fidelity and occlusion aware face swapping. arXiv preprint arXiv:1912.13457 (2019)

  23. Li, T., Bolkart, T., Black, M.J., Li, H., Romero, J.: Learning a model of facial shape and expression from 4D scans. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 36(6), 194:1–194:17 (2017). https://doi.org/10.1145/3130800.3130813

  24. Liu, Y., Shu, Z., Li, Y., Lin, Z., Zhang, R., Kung, S.Y.: 3D-FM GAN: towards 3D-controllable face manipulation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13675, pp. 107–125. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19784-0_7

    Chapter  Google Scholar 

  25. Liu, Z., et al.: Fine-grained face swapping via regional GAN inversion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8578–8587 (2023)

    Google Scholar 

  26. Nagrani, A., Chung, J.S., Xie, W., Zisserman, A.: Voxceleb: large-scale speaker verification in the wild. Comput. Speech Lang. 60, 101027 (2020)

    Article  Google Scholar 

  27. Nirkin, Y., Keller, Y., Hassner, T.: FSGAN: subject agnostic face swapping and reenactment. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7184–7193 (2019)

    Google Scholar 

  28. Paysan, P., Knothe, R., Amberg, B., Romdhani, S., Vetter, T.: A 3D face model for pose and illumination invariant face recognition. In: 2009 sixth IEEE International Conference on Advanced Video and Signal Based Surveillance, pp. 296–301. IEEE (2009)

    Google Scholar 

  29. Perov, I., et al.: Deepfacelab: integrated, flexible and extensible face-swapping framework. arXiv preprint arXiv:2005.05535 (2020)

  30. Ren, X., Chen, X., Yao, P., Shum, H.Y., Wang, B.: Reinforced disentanglement for face swapping without skip connection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 20665–20675 (2023)

    Google Scholar 

  31. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)

    Google Scholar 

  32. Shiohara, K., Yang, X., Taketomi, T.: Blendface: re-designing identity encoders for face-swapping. arXiv preprint arXiv:2307.10854 (2023)

  33. Siarohin, A., Lathuilière, S., Tulyakov, S., Ricci, E., Sebe, N.: First order motion model for image animation. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  34. Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13(4), 376–380 (1991). https://doi.org/10.1109/34.88573

    Article  Google Scholar 

  35. Vu, T., Do, K., Nguyen, K., Than, K.: Face swapping as a simple arithmetic operation. arXiv preprint arXiv:2211.10812 (2022)

  36. Wang, T.C., Mallya, A., Liu, M.Y.: One-shot free-view neural talking-head synthesis for video conferencing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10039–10049 (2021)

    Google Scholar 

  37. Wang, Y., Yang, D., Bremond, F., Dantcheva, A.: Latent image animator: learning to animate images via latent space navigation. arXiv preprint arXiv:2203.09043 (2022)

  38. Wang, Y., et al.: Hififace: 3D shape and semantic prior guided high fidelity face swapping. arXiv preprint arXiv:2106.09965 (2021)

  39. Wang, Z., Zhang, J., Chen, R., Wang, W., Luo, P.: Restoreformer: high-quality blind face restoration from undegraded key-value pairs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17512–17521 (2022)

    Google Scholar 

  40. Xu, Y., Deng, B., Wang, J., Jing, Y., Pan, J., He, S.: High-resolution face swapping via latent semantics disentanglement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7642–7651 (2022)

    Google Scholar 

  41. Xu, Z., et al.: StyleSwap: style-based generator empowers robust face swapping. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13674, pp. 661–677. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19781-9_38

    Chapter  Google Scholar 

  42. Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., Sang, N.: Bisenet: bilateral segmentation network for real-time semantic segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 325–341 (2018)

    Google Scholar 

  43. Yuan, G., Li, M., Zhang, Y., Zheng, H.: Reliableswap: boosting general face swapping via reliable supervision. arXiv preprint arXiv:2306.05356 (2023)

  44. Zakharov, E., Shysheya, A., Burkov, E., Lempitsky, V.: Few-shot adversarial learning of realistic neural talking head models. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9459–9468 (2019)

    Google Scholar 

  45. Zhao, W., Rao, Y., Shi, W., Liu, Z., Zhou, J., Lu, J.: Diffswap: high-fidelity and controllable face swapping via 3D-aware masked diffusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8568–8577 (2023)

    Google Scholar 

  46. Zhu, Y., Li, Q., Wang, J., Xu, C.Z., Sun, Z.: One shot face swapping on megapixels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4834–4844 (2021)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Institute for Information & communications Technology Promotion(IITP) grant funded by the Korea government(MSIT) (No. RS-2019-II190075 Artificial Intelligence Graduate School Program(KAIST)), the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. NRF-2022R1A2B5B02001913), and KAIST-NAVER hypercreative AI center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaeseong Lee .

Editor information

Editors and Affiliations

Ethics declarations

Ethical Considerations

Face swapping is useful in areas like digital resurrection and telepresence but also poses risks of privacy invasion and misinformation. We are dedicated to prevent the potential misuse our model, and plan to release our model exclusively for research purposes. Additionally, we will provide a benchmark dataset to support research in face forensics and privacy protection.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 5966 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, J., Hyung, J., Jung, S., Choo, J. (2025). SelfSwapper: Self-supervised Face Swapping via Shape Agnostic Masked AutoEncoder. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15113. Springer, Cham. https://doi.org/10.1007/978-3-031-73001-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73001-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73000-9

  • Online ISBN: 978-3-031-73001-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics