GMT: Enhancing Generalizable Neural Rendering via Geometry-Driven Multi-Reference Texture Transfer | SpringerLink
Skip to main content

GMT: Enhancing Generalizable Neural Rendering via Geometry-Driven Multi-Reference Texture Transfer

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Novel view synthesis (NVS) aims to generate images at arbitrary viewpoints using multi-view images, and recent insights from neural radiance fields (NeRF) have contributed to remarkable improvements. Recently, studies on generalizable NeRF (G-NeRF) have addressed the challenge of per-scene optimization in NeRFs. The construction of radiance fields on-the-fly in G-NeRF simplifies the NVS process, making it well-suited for real-world applications. Meanwhile, G-NeRF still struggles in representing fine details for a specific scene due to the absence of per-scene optimization, even with texture-rich multi-view source inputs. As a remedy, we propose a Geometry-driven Multi-reference Texture transfer network (GMT) available as a plug-and-play module designed for G-NeRF. Specifically, we propose ray-imposed deformable convolution (RayDCN), which aligns input and reference features reflecting scene geometry. Additionally, the proposed texture preserving transformer (TPFormer) aggregates multi-view source features while preserving texture information. Consequently, our module enables direct interaction between adjacent pixels during the image enhancement process, which is deficient in G-NeRF models with an independent rendering process per pixel. This addresses constraints that hinder the ability to capture high-frequency details. Experiments show that our plug-and-play module consistently improves G-NeRF models on various benchmark datasets.

Y. Yoon and H-K. Jang—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8465
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cao, A., Rockwell, C., Johnson, J.: FWD: real-time novel view synthesis with forward warping and depth. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15713–15724 (2022)

    Google Scholar 

  2. Cao, J., et al.: Reference-based image super-resolution with deformable attention transformer. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13678, pp. 325–342. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19797-0_19

    Chapter  Google Scholar 

  3. Charatan, D., Li, S., Tagliasacchi, A., Sitzmann, V.: pixelsplat: 3D Gaussian splats from image pairs for scalable generalizable 3D reconstruction. arXiv preprint arXiv:2312.12337 (2023)

  4. Chaurasia, G., Duchene, S., Sorkine-Hornung, O., Drettakis, G.: Depth synthesis and local warps for plausible image-based navigation. ACM Trans. Graph. (TOG) 32(3), 1–12 (2013)

    Article  Google Scholar 

  5. Chen, A., Xu, Z., Geiger, A., Yu, J., Su, H.: TensoRF: tensorial radiance fields. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13692, pp. 333–350. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19824-3_20

    Chapter  Google Scholar 

  6. Chen, A., et al.: MVSNeRF: fast generalizable radiance field reconstruction from multi-view stereo. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14124–14133 (2021)

    Google Scholar 

  7. Choi, I., Gallo, O., Troccoli, A., Kim, M.H., Kautz, J.: Extreme view synthesis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7781–7790 (2019)

    Google Scholar 

  8. Choy, C., Gwak, J., Savarese, S.: 4D spatio-temporal convnets: Minkowski convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3075–3084 (2019)

    Google Scholar 

  9. Debevec, P., Yu, Y., Borshukov, G.: Efficient view-dependent image-based rendering with projective texture-mapping. In: Drettakis, G., Max, N. (eds.) EGSR 1998. E, pp. 105–116. Springer, Vienna (1998). https://doi.org/10.1007/978-3-7091-6453-2_10

    Chapter  Google Scholar 

  10. Deng, K., Liu, A., Zhu, J.Y., Ramanan, D.: Depth-supervised nerf: fewer views and faster training for free. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12882–12891 (2022)

    Google Scholar 

  11. Downs, L., et al.: Google scanned objects: a high-quality dataset of 3D scanned household items. In: 2022 International Conference on Robotics and Automation (ICRA), pp. 2553–2560. IEEE (2022)

    Google Scholar 

  12. Du, Y., Smith, C., Tewari, A., Sitzmann, V.: Learning to render novel views from wide-baseline stereo pairs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4970–4980 (2023)

    Google Scholar 

  13. Flynn, J., et al.: Deepview: view synthesis with learned gradient descent. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2367–2376 (2019)

    Google Scholar 

  14. Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels: radiance fields without neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5501–5510 (2022)

    Google Scholar 

  15. Gatys, L., Ecker, A.S., Bethge, M.: Texture synthesis using convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  16. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2414–2423 (2016)

    Google Scholar 

  17. Gortler, S.J., Grzeszczuk, R., Szeliski, R., Cohen, M.F.: The Lumigraph. Association for Computing Machinery, New York, NY, USA, 1 edn. (2023). https://doi.org/10.1145/3596711.3596760

  18. Hedman, P., Philip, J., Price, T., Frahm, J.M., Drettakis, G., Brostow, G.: Deep blending for free-viewpoint image-based rendering. ACM Trans. Graph. (ToG) 37(6), 1–15 (2018)

    Article  Google Scholar 

  19. Hore, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: 2010 20th International Conference on Pattern Recognition, pp. 2366–2369. IEEE (2010)

    Google Scholar 

  20. Huang, J., et al.: Adversarial texture optimization from RGB-D scans. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1559–1568 (2020)

    Google Scholar 

  21. Jensen, R., Dahl, A., Vogiatzis, G., Tola, E., Aanæs, H.: Large scale multi-view stereopsis evaluation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 406–413 (2014)

    Google Scholar 

  22. Jiang, Y., Chan, K.C., Wang, X., Loy, C.C., Liu, Z.: Robust reference-based super-resolution via c2-matching. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2103–2112 (2021)

    Google Scholar 

  23. Johari, M.M., Lepoittevin, Y., Fleuret, F.: Geonerf: generalizing nerf with geometry priors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18365–18375 (2022)

    Google Scholar 

  24. Kalantari, N.K., Wang, T.C., Ramamoorthi, R.: Learning-based view synthesis for light field cameras. ACM Trans. Graph. (TOG) 35(6), 1–10 (2016)

    Article  Google Scholar 

  25. Kerbl, B., Kopanas, G., Leimkühler, T., Drettakis, G.: 3D Gaussian splatting for real-time radiance field rendering. ACM Trans. Graph. 42(4) (2023)

    Google Scholar 

  26. Levoy, M., Hanrahan, P.: Light field rendering. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques. p. 31–42. SIGGRAPH 1996, Association for Computing Machinery, New York, NY, USA (1996). https://doi.org/10.1145/237170.237199

  27. Li, Y., Luo, Y., Lu, J.: Reference-guided deep deblurring via a selective attention network. Appl. Intell. 1–13 (2022)

    Google Scholar 

  28. Liu, A., Tucker, R., Jampani, V., Makadia, A., Snavely, N., Kanazawa, A.: Infinite nature: perpetual view generation of natural scenes from a single image. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14458–14467 (2021)

    Google Scholar 

  29. Liu, C., Hua, Z., Li, J.: Reference-based dual-task framework for motion deblurring. Vis. Comput. 1–15 (2023)

    Google Scholar 

  30. Liu, Y., et al.: Neural rays for occlusion-aware image-based rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7824–7833 (2022)

    Google Scholar 

  31. Lu, L., Li, W., Tao, X., Lu, J., Jia, J.: MASA-SR: matching acceleration and spatial adaptation for reference-based image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6368–6377 (2021)

    Google Scholar 

  32. Mildenhall, B., et al.: Local light field fusion: practical view synthesis with prescriptive sampling guidelines. ACM Trans. Graph. (TOG) 38(4), 1–14 (2019)

    Article  Google Scholar 

  33. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. Commun. ACM 65(1), 99–106 (2021)

    Article  Google Scholar 

  34. Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. arXiv preprint arXiv:2201.05989 (2022)

  35. Penner, E., Zhang, L.: Soft 3D reconstruction for view synthesis. ACM Trans. Graph. (TOG) 36(6), 1–11 (2017)

    Article  Google Scholar 

  36. Pesavento, M., Volino, M., Hilton, A.: Attention-based multi-reference learning for image super-resolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14697–14706 (2021)

    Google Scholar 

  37. Riegler, G., Koltun, V.: Free view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020 Part XIX. LNCS, vol. 12364, pp. 623–640. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58529-7_37

    Chapter  Google Scholar 

  38. Roessle, B., Barron, J.T., Mildenhall, B., Srinivasan, P.P., Nießner, M.: Dense depth priors for neural radiance fields from sparse input views. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12892–12901 (2022)

    Google Scholar 

  39. Shum, H., Kang, S.B.: Review of image-based rendering techniques. In: Visual Communications and Image Processing 2000, vol. 4067, pp. 2–13. SPIE (2000)

    Google Scholar 

  40. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  41. Suhail, M., Esteves, C., Sigal, L., Makadia, A.: Generalizable patch-based neural rendering. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13692, pp. 156–174. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19824-3_10

    Chapter  Google Scholar 

  42. Suhail, M., Esteves, C., Sigal, L., Makadia, A.: Light field neural rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8269–8279 (2022)

    Google Scholar 

  43. Sun, C., Sun, M., Chen, H.T.: Direct voxel grid optimization: Super-fast convergence for radiance fields reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5459–5469 (2022)

    Google Scholar 

  44. Thies, J., Zollhöfer, M., Nießner, M.: Deferred neural rendering: image synthesis using neural textures. ACM Trans. Graph. (TOG) 38(4), 1–12 (2019)

    Article  Google Scholar 

  45. Thies, J., Zollhöfer, M., Theobalt, C., Stamminger, M., Nießner, M.: IGNOR: image-guided neural object rendering. arXiv preprint arXiv:1811.10720 (2018)

  46. Trevithick, A., Yang, B.: GRF: learning a general radiance field for 3D representation and rendering. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15182–15192 (2021)

    Google Scholar 

  47. Wang, P., Chen, X., Chen, T., Venugopalan, S., Wang, Z., et al.: Is attention all nerf needs? arXiv preprint arXiv:2207.13298 (2022)

  48. Wang, Q., et al.: IBRNet: learning multi-view image-based rendering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4690–4699 (2021)

    Google Scholar 

  49. Wei, Y., Liu, S., Rao, Y., Zhao, W., Lu, J., Zhou, J.: NerfingMVS: guided optimization of neural radiance fields for indoor multi-view stereo. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5610–5619 (2021)

    Google Scholar 

  50. Wizadwongsa, S., Phongthawee, P., Yenphraphai, J., Suwajanakorn, S.: NeX: real-time view synthesis with neural basis expansion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8534–8543 (2021)

    Google Scholar 

  51. Xia, B., Tian, Y., Hang, Y., Yang, W., Liao, Q., Zhou, J.: Coarse-to-fine embedded patchmatch and multi-scale dynamic aggregation for reference-based super-resolution. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 2768–2776 (2022)

    Google Scholar 

  52. Xu, H., et al.: MuRF: multi-baseline radiance fields. arXiv preprint arXiv:2312.04565 (2023)

  53. Xu, Q., et al.: Point-nerf: point-based neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5438–5448 (2022)

    Google Scholar 

  54. Xu, Z., Bi, S., Sunkavalli, K., Hadap, S., Su, H., Ramamoorthi, R.: Deep view synthesis from sparse photometric images. ACM Trans. Graph. (ToG) 38(4), 1–13 (2019)

    Google Scholar 

  55. Yang, F., Yang, H., Fu, J., Lu, H., Guo, B.: Learning texture transformer network for image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5791–5800 (2020)

    Google Scholar 

  56. Yang, H., et al.: ContraNeRF: generalizable neural radiance fields for synthetic-to-real novel view synthesis via contrastive learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16508–16517 (2023)

    Google Scholar 

  57. Yao, Y., Luo, Z., Li, S., Fang, T., Quan, L.: MVSNet: depth inference for unstructured multi-view stereo. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 767–783 (2018)

    Google Scholar 

  58. Youngho, Y., Kuk-Jin, Y.: Cross-guided optimization of radiance fields with multi-view image super-resolution for high-resolution novel view synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12428–12438 (2023)

    Google Scholar 

  59. Yu, A., Li, R., Tancik, M., Li, H., Ng, R., Kanazawa, A.: Plenoctrees for real-time rendering of neural radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5752–5761 (2021)

    Google Scholar 

  60. Yu, A., Ye, V., Tancik, M., Kanazawa, A.: pixelnerf: neural radiance fields from one or few images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4578–4587 (2021)

    Google Scholar 

  61. Zhang, L., Li, X., He, D., Li, F., Ding, E., Zhang, Z.: LMR: a large-scale multi-reference dataset for reference-based super-resolution. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13118–13127 (2023)

    Google Scholar 

  62. Zhang, L., Li, X., He, D., Li, F., Wang, Y., Zhang, Z.: RRSR: reciprocal reference-based image super-resolution with progressive feature alignment and selection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. pp, pp. 648–664. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19800-7_38

    Chapter  Google Scholar 

  63. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

  64. Zhang, Z., Wang, Z., Lin, Z., Qi, H.: Image super-resolution by neural texture transfer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7982–7991 (2019)

    Google Scholar 

  65. Zheng, H., Ji, M., Wang, H., Liu, Y., Fang, L.: CrossNet: an end-to-end reference-based super resolution network using cross-scale warping. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 88–104 (2018)

    Google Scholar 

  66. Zhou, K., et al.: Nerflix: high-quality neural view synthesis by learning a degradation-driven inter-viewpoint mixer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12363–12374 (2023)

    Google Scholar 

  67. Zhou, T., Tucker, R., Flynn, J., Fyffe, G., Snavely, N.: Stereo magnification: learning view synthesis using multiplane images. arXiv preprint arXiv:1805.09817 (2018)

  68. Zou, H., Suganuma, M., Okatani, T.: Reference-based motion blur removal: learning to utilize sharpness in the reference image. arXiv preprint arXiv:2307.02875 (2023)

Download references

Acknowledgement

This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government (MSIT) (NRF2022R1A2B5B03002636).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngho Yoon .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1087 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yoon, Y., Jang, HK., Yoon, KJ. (2025). GMT: Enhancing Generalizable Neural Rendering via Geometry-Driven Multi-Reference Texture Transfer. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15113. Springer, Cham. https://doi.org/10.1007/978-3-031-73001-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-73001-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-73000-9

  • Online ISBN: 978-3-031-73001-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics