REDIR: Refocus-Free Event-Based De-occlusion Image Reconstruction | SpringerLink
Skip to main content

REDIR: Refocus-Free Event-Based De-occlusion Image Reconstruction

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

The employment of the event-based synthetic aperture imaging (E-SAI) technique, which has the capability to capture high-frequency light intensity variations, has facilitated its extensive application on scene de-occlusion reconstruction tasks. However, existing methods usually require prior information and have strict restriction of camera motion on SAI acquisition methods. This paper proposes a novel end-to-end refocus-free variable E-SAI de-occlusion image reconstruction approach REDIR, which can align the global and local features of the variable event data and effectively achieve high-resolution imaging of pure event streams. To further improve the reconstruction of the occluded target, we propose a perceptual mask-gated connection module to interlink information between modules, and incorporate a spatial-temporal attention mechanism into the SNN block to enhance target extraction ability of the model. Through extensive experiments, our model achieves state-of-the-art reconstruction quality on the traditional E-SAI dataset without prior information, while verifying the effectiveness of the variable event data feature registration method on our newly introduced V-ESAI dataset, which obviates the reliance on prior knowledge and extends the applicability of SAI acquisition methods by incorporating focus changes, lens rotations, and non-uniform motion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9380
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 11725
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: Voxelmorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  2. Chowdhury, S.S., Lee, C., Roy, K.: Towards understanding the effect of leak in spiking neural networks. Neurocomputing 464, 83–94 (2021)

    Article  Google Scholar 

  3. Delbrück, T., Linares-Barranco, B., Culurciello, E., Posch, C.: Activity-driven, event-based vision sensors. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pp. 2426–2429. IEEE (2010)

    Google Scholar 

  4. Gallego, G., et al.: Event-based vision: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 44(1), 154–180 (2020)

    Article  Google Scholar 

  5. Gallego, G., Rebecq, H., Scaramuzza, D.: A unifying contrast maximization framework for event cameras, with applications to motion, depth, and optical flow estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3867–3876 (2018)

    Google Scholar 

  6. Gu, C., Learned-Miller, E., Sheldon, D., Gallego, G., Bideau, P.: The spatio-temporal poisson point process: a simple model for the alignment of event camera data. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13495–13504 (2021)

    Google Scholar 

  7. Gupta, A., Sharma, P., Ghosh, D., Honkote, V., Ghose, D.: Event-based time-to-contact estimation with depth image fusion. In: Kumar, S., Sharma, H., Balachandran, K., Kim, J.H., Bansal, J.C. (eds.) CIS 2022, pp. 65–77. Springer, Singapore (2023). https://doi.org/10.1007/978-981-19-9379-4_6

    Chapter  Google Scholar 

  8. Huang, X., Zhang, Y., Xiong, Z.: Progressive spatio-temporal alignment for efficient event-based motion estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1537–1546 (2023)

    Google Scholar 

  9. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  10. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  11. Kim, H., Leutenegger, S., Davison, A.J.: Real-time 3D reconstruction and 6-DoF tracking with an event camera. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 349–364. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_21

    Chapter  Google Scholar 

  12. Liu, D., Parra, A., Chin, T.J.: Spatiotemporal registration for event-based visual odometry. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021). https://doi.org/10.1109/cvpr46437.2021.00490

  13. Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016)

  14. Mahendran, A., Vedaldi, A.: Understanding deep image representations by inverting them. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5188–5196 (2015)

    Google Scholar 

  15. Mitrokhin, A., Fermüller, C., Parameshwara, C., Aloimonos, Y.: Event-based moving object detection and tracking. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1–9. IEEE (2018)

    Google Scholar 

  16. Munda, G., Reinbacher, C., Pock, T.: Real-time intensity-image reconstruction for event cameras using manifold regularisation. Int. J. Comput. Vision 126, 1381–1393 (2018)

    Article  Google Scholar 

  17. Neil, D., Pfeiffer, M., Liu, S.C.: Phased LSTM: accelerating recurrent network training for long or event-based sequences. Cornell University - arXiv, Cornell University - arXiv (2016)

    Google Scholar 

  18. Pan, L., Hartley, R., Scheerlinck, C., Liu, M., Yu, X., Dai, Y.: High frame rate video reconstruction based on an event camera. IEEE Trans. Pattern Anal. Mach. Intell. 1 (2020). https://doi.org/10.1109/tpami.2020.3036667

  19. Qi, C., Su, H., Mo, K., Guibas, L.: Pointnet: deep learning on point sets for 3D classification and segmentation. arxiv 2016. arXiv preprint arXiv:1612.00593

  20. Rebecq, H., Gallego, G., Mueggler, E., Scaramuzza, D.: EMVS: event-based multi-view stereo—3D reconstruction with an event camera in real-time. Int. J. Comput. Vis. 1394–1414 (2018). https://doi.org/10.1007/s11263-017-1050-6

  21. Scheerlinck, C., Rebecq, H., Gehrig, D., Barnes, N., Mahony, R.E., Scaramuzza, D.: Fast image reconstruction with an event camera. In: 2020 IEEE Winter Conference on Applications of Computer Vision (WACV) (2020). https://doi.org/10.1109/wacv45572.2020.9093366

  22. Stearns, C.C., Kannappan, K.: Method for 2-D affine transformation of images (1995)

    Google Scholar 

  23. Vaish, V., Wilburn, B., Joshi, N., Levoy, M.: Using plane+ parallax for calibrating dense camera arrays. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004, vol. 1, p. 1. IEEE (2004)

    Google Scholar 

  24. Wang, Y., Wang, L., Yang, J., An, W., Yu, J., Guo, Y.: Spatial-angular interaction for light field image super-resolution. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12368, pp. 290–308. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58592-1_18

    Chapter  Google Scholar 

  25. Wang, Y., Wu, T., Yang, J., Wang, L., An, W., Guo, Y.: Deoccnet: learning to see through foreground occlusions in light fields. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 118–127 (2020)

    Google Scholar 

  26. Wang, Z., Chen, J., Hoi, S.C.: Deep learning for image super-resolution: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 43(10), 3365–3387 (2020)

    Article  Google Scholar 

  27. Wang, Z., Ng, Y., Goor, P., Mahony, R.: Event camera calibration of per-pixel biased contrast threshold. arXiv, Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  28. Xu, J., Jiang, M., Yu, L., Yang, W., Wang, W.: Robust motion compensation for event cameras with smooth constraint. IEEE Trans. Comput. Imaging 6, 604–614 (2020)

    Article  Google Scholar 

  29. Yao, M., et al.: Attention spiking neural networks. IEEE Trans. Pattern Anal. Mach. Intell. 45(8), 9393–9410 (2023)

    Article  Google Scholar 

  30. Yu, L., Zhang, X., Liao, W., Yang, W., Xia, G.S.: Learning to see through with events. IEEE Trans. Pattern Anal. Mach. Intell. 45(7), 8660–8678 (2023). https://doi.org/10.1109/TPAMI.2022.3227448

    Article  Google Scholar 

  31. Zhang, X., Liao, W., Yu, L., Yang, W., Xia, G.S.: Event-based synthetic aperture imaging with a hybrid network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14235–14244 (2021)

    Google Scholar 

  32. Zhao, S., Dong, Y., Chang, E.I., Xu, Y., et al.: Recursive cascaded networks for unsupervised medical image registration. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10600–10610 (2019)

    Google Scholar 

  33. Zou, Y., Zheng, Y., Takatani, T., Fu, Y.: Learning to reconstruct high speed and high dynamic range videos from events. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2024–2033 (2021)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by Science and Technology Innovation (STI) 2030—Major Projects under Grant 2022ZD0208700, and National Natural Science Foundation of China under Grant 62376264.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hailong Shi or Xingyu Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, Q., Shi, H., Li, H., Xiao, J., Gao, X. (2025). REDIR: Refocus-Free Event-Based De-occlusion Image Reconstruction. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15138. Springer, Cham. https://doi.org/10.1007/978-3-031-72989-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72989-8_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72988-1

  • Online ISBN: 978-3-031-72989-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics