Abstract
Prior works have addressed the problem of driver intention prediction (DIP) by identifying maneuvers after their onset. On the other hand, early anticipation is equally important in scenarios that demand a preemptive response before a maneuver begins. However, there is no prior work aimed at addressing the problem of driver action anticipation before the onset of the maneuver, limiting the ability of the advanced driver assistance system (ADAS) for early maneuver anticipation. In this work, we introduce Anticipating Driving Maneuvers (ADM), a new task that enables driver action anticipation before the onset of the maneuver. To initiate research in ADM task, we curate Driving Action Anticipation Dataset, DAAD, that is multi-view: in- and out-cabin views in dense and heterogeneous scenarios, and multimodal: egocentric view and gaze information. The dataset captures sequences both before the initiation and during the execution of a maneuver. During dataset collection, we also ensure to capture wide diversity in traffic scenarios, weather and illumination, and driveway conditions. Next, we propose a strong baseline based on a transformer architecture to effectively model multiple views and modalities over longer video lengths. We benchmark the existing DIP methods on DAAD and related datasets. Finally, we perform an ablation study showing the effectiveness of multiple views and modalities in maneuver anticipation. Project Page: https://cvit.iiit.ac.in/research/projects/cvit-projects/daad.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
By “anticipate”, we refer to the model’s ability to predict a maneuver a few seconds before its actual execution.
- 2.
We use “multi-view” for more than two views. None of the aforementioned datasets other than AIDE [50] are multi-view. However, it has only 3 maneuver classes with 3 s long videos.
References
Aliakbarian, M.S., Saleh, F.S., Salzmann, M., Fernando, B., Petersson, L., Andersson, L.: Viena2: a driving anticipation dataset (2018)
Amadori, P.V., Fischer, T., Wang, R., Demiris, Y.: Decision anticipation for driving assistance systems. In: ITSC, pp. 1–7. IEEE (2020)
Arandjelovic, R., Zisserman, A.: Look, listen and learn. In: ICCV, pp. 609–617 (2017)
Carreira, J., Noland, E., Banki-Horvath, A., Hillier, C., Zisserman, A.: A short note about kinetics-600. CoRR (2018)
Damen, D., et al.: Scaling egocentric vision: the epic-kitchens dataset. In: ECCV, pp. 720–736 (2018)
Damen, D., et al.: Rescaling egocentric vision: collection, pipeline and challenges for epic-kitchens-100. In: IJCV, pp. 1–23 (2022)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: ICLR (2021)
Dosovitskiy, A., et al.: Flownet: learning optical flow with convolutional networks. In: ICCV, pp. 2758–2766 (2015)
Dutta, A., Zisserman, A.: The VIA annotation software for images, audio and video. In: ACM Multimedia, pp. 2276–2279 (2019)
Fan, H., et al.: Multiscale vision transformers. In: ICCV, pp. 6824–6835 (2021)
Furnari, A., Farinella, G.M.: What would you expect? Anticipating egocentric actions with rolling-unrolling LSTMs and modality attention. In: ICCV, pp. 6252–6261 (2019)
Furnari, A., Farinella, G.M.: Rolling-unrolling LSTMs for action anticipation from first-person video. IEEE TPAMI 43(11), 4021–4036 (2020)
Gao, J., Yang, Z., Nevatia, R.: RED: reinforced encoder-decoder networks for action anticipation. In: BMVC. BMVA Press (2017)
Gebert, P., Roitberg, A., Haurilet, M., Stiefelhagen, R.: End-to-end prediction of driver intention using 3D convolutional neural networks. In: IEEE Intelligent Vehicles Symposium (IV), pp. 969–974 (2019)
Girase, H., Agarwal, N., Choi, C., Mangalam, K.: Latency matters: real-time action forecasting transformer. In: CVPR, pp. 18759–18769 (2023)
Girdhar, R., Grauman, K.: Anticipative video transformer. In: ICCV, pp. 13505–13515 (2021)
Girdhar, R., Singh, M., Ravi, N., van der Maaten, L., Joulin, A., Misra, I.: Omnivore: a single model for many visual modalities. In: CVPR, pp. 16102–16112 (2022)
Gong, D., Lee, J., Kim, M., Ha, S.J., Cho, M.: Future transformer for long-term action anticipation. In: CVPR, pp. 3052–3061 (2022)
Hara, K., Kataoka, H., Satoh, Y.: Can spatiotemporal 3D CNNs retrace the history of 2D CNNs and imagenet? In: CVPR, pp. 6546–6555 (2018)
Huang, D.-A., Kitani, K.M.: Action-reaction: forecasting the dynamics of human interaction. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 489–504. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_32
Jain, A., Koppula, H.S., Soh, S., Raghavan, B., Saxena, A.: Car that knows before you do: anticipating maneuvers via learning temporal driving models. In: ICCV (2015)
Jain, A., Singh, A., Koppula, H.S., Soh, S., Saxena, A.: Recurrent neural networks for driver activity anticipation via sensory-fusion architecture. In: ICRA, pp. 3118–3125. IEEE (2016)
Kasahara, I., Stent, S., Park, H.S.: Look both ways: Self-supervising driver gaze estimation and road scene saliency. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13673, pp. 126–142. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19778-9_8
Khairdoost, N., Shirpour, M., Bauer, M.A., Beauchemin, S.S.: Real-time driver maneuver prediction using LSTM. IEEE Trans. Intell. Veh. 5(4), 714–724 (2020)
Koppula, H.S., Saxena, A.: Anticipating human activities using object affordances for reactive robotic response. IEEE TPAMI 14–29 (2015)
Li, Y., et al.: Mvitv2: improved multiscale vision transformers for classification and detection. In: CVPR, pp. 4804–4814 (2022)
Liu, C., Chen, Y., Tai, L., Ye, H., Liu, M., Shi, B.E.: A gaze model improves autonomous driving. In: ACM Symposium on Eye Tracking Research & Applications, pp. 1–5 (2019)
Liu, M., Tang, S., Li, Y., Rehg, J.M.: Forecasting human-object interaction: joint prediction of motor attention and actions in first person video. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 704–721. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_41
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: ICLR (Poster) (2019)
Ma, Y., et al.: Cemformer: learning to predict driver intentions from in-cabin and external cameras via spatial-temporal transformers. In: ITSC, pp. 4960–4966. IEEE (2023)
Nagarajan, T., Li, Y., Feichtenhofer, C., Grauman, K.: Ego-topo: environment affordances from egocentric video. In: CVPR, pp. 163–172 (2020)
Nawhal, M., Jyothi, A.A., Mori, G.: Rethinking learning approaches for long-term action anticipation. In: ECCV, pp. 558–576 (2022)
Pal, A., Mondal, S., Christensen, H.I.: Looking at the right stuff-guided semantic-gaze for autonomous driving. In: CVPR, pp. 11883–11892 (2020)
Palazzi, A., Abati, D., Solera, F., Cucchiara, R., et al.: Predicting the driver’s focus of attention: the DR (eye) VE project. IEEE TPAMI 41(7), 1720–1733 (2018)
Pang, B., Zha, K., Cao, H., Shi, C., Lu, C.: Deep RNN framework for visual sequential applications. In: CVPR, pp. 423–432 (2019)
Ramanishka, V., Chen, Y.T., Misu, T., Saenko, K.: Toward driving scene understanding: a dataset for learning driver behavior and causal reasoning. In: CVPR (2018)
Rong, Y., Akata, Z., Kasneci, E.: Driver intention anticipation based on in-cabin and driving scene monitoring. In: IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), pp. 1–8 (2020)
Sandler, M., Zhmoginov, A., Vladymyrov, M., Jackson, A.: Fine-tuning image transformers using learnable memory. In: CVPR, pp. 12155–12164 (2022)
Sener, F., Singhania, D., Yao, A.: Temporal aggregate representations for long-range video understanding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 154–171. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_10
Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: NeurIPS, vol. 28 (2015)
Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: NeurIPS, vol. 27 (2014)
Somasundaram, K., et al.: Project aria: a new tool for egocentric multi-modal AI research. CoRR (2023)
Sun, C., Myers, A., Vondrick, C., Murphy, K., Schmid, C.: Videobert: a joint model for video and language representation learning. In: ICCV, pp. 7464–7473 (2019)
Tziafas, G., Kasaei, H.: Early or late fusion matters: efficient RGB-D fusion in vision transformers for 3D object recognition. In: IROS, pp. 9558–9565. IEEE (2023)
Vaswani, A., et al.: Attention is all you need. In: NeurIPS, vol. 30 (2017)
Vondrick, C., Pirsiavash, H., Torralba, A.: Anticipating visual representations from unlabeled video. In: CVPR, pp. 98–106 (2016)
Wu, C.Y., et al.: Memvit: memory-augmented multiscale vision transformer for efficient long-term video recognition. In: CVPR, pp. 13587–13597 (2022)
Wu, M., et al.: Gaze-based intention anticipation over driving manoeuvres in semi-autonomous vehicles. In: IROS, pp. 6210–6216. IEEE (2019)
Xia, Y., Zhang, D., Kim, J., Nakayama, K., Zipser, K., Whitney, D.: Predicting driver attention in critical situations. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11365, pp. 658–674. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20873-8_42
Yang, D., et al.: Aide: a vision-driven multi-view, multi-modal, multi-tasking dataset for assistive driving perception. In: ICCV, pp. 20459–20470 (2023)
Zhong, Z., Schneider, D., Voit, M., Stiefelhagen, R., Beyerer, J.: Anticipative feature fusion transformer for multi-modal action anticipation. In: CVPR, pp. 6068–6077 (2023)
Zhou, F., Yang, X.J., De Winter, J.C.: Using eye-tracking data to predict situation awareness in real time during takeover transitions in conditionally automated driving. IEEE TITS 23(3), 2284–2295 (2021)
Zhu, X., Xiong, Y., Dai, J., Yuan, L., Wei, Y.: Deep feature flow for video recognition. In: CVPR, pp. 2349–2358 (2017)
Acknowledgements
This work is supported by iHub-Data and Mobility at IIIT Hyderabad and Project Aria from Meta.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wasi, A., Gangisetty, S., Rai, S.N., Jawahar, C.V. (2025). Early Anticipation of Driving Maneuvers. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15128. Springer, Cham. https://doi.org/10.1007/978-3-031-72897-6_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-72897-6_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72896-9
Online ISBN: 978-3-031-72897-6
eBook Packages: Computer ScienceComputer Science (R0)