Early Anticipation of Driving Maneuvers | SpringerLink
Skip to main content

Early Anticipation of Driving Maneuvers

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Abstract

Prior works have addressed the problem of driver intention prediction (DIP) by identifying maneuvers after their onset. On the other hand, early anticipation is equally important in scenarios that demand a preemptive response before a maneuver begins. However, there is no prior work aimed at addressing the problem of driver action anticipation before the onset of the maneuver, limiting the ability of the advanced driver assistance system (ADAS) for early maneuver anticipation. In this work, we introduce Anticipating Driving Maneuvers (ADM), a new task that enables driver action anticipation before the onset of the maneuver. To initiate research in ADM task, we curate Driving Action Anticipation Dataset, DAAD, that is multi-view: in- and out-cabin views in dense and heterogeneous scenarios, and multimodal: egocentric view and gaze information. The dataset captures sequences both before the initiation and during the execution of a maneuver. During dataset collection, we also ensure to capture wide diversity in traffic scenarios, weather and illumination, and driveway conditions. Next, we propose a strong baseline based on a transformer architecture to effectively model multiple views and modalities over longer video lengths. We benchmark the existing DIP methods on DAAD and related datasets. Finally, we perform an ablation study showing the effectiveness of multiple views and modalities in maneuver anticipation. Project Page: https://cvit.iiit.ac.in/research/projects/cvit-projects/daad.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8465
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    By “anticipate”, we refer to the model’s ability to predict a maneuver a few seconds before its actual execution.

  2. 2.

    We use “multi-view” for more than two views. None of the aforementioned datasets other than AIDE [50] are multi-view. However, it has only 3 maneuver classes with 3 s long videos.

References

  1. Aliakbarian, M.S., Saleh, F.S., Salzmann, M., Fernando, B., Petersson, L., Andersson, L.: Viena2: a driving anticipation dataset (2018)

    Google Scholar 

  2. Amadori, P.V., Fischer, T., Wang, R., Demiris, Y.: Decision anticipation for driving assistance systems. In: ITSC, pp. 1–7. IEEE (2020)

    Google Scholar 

  3. Arandjelovic, R., Zisserman, A.: Look, listen and learn. In: ICCV, pp. 609–617 (2017)

    Google Scholar 

  4. Carreira, J., Noland, E., Banki-Horvath, A., Hillier, C., Zisserman, A.: A short note about kinetics-600. CoRR (2018)

    Google Scholar 

  5. Damen, D., et al.: Scaling egocentric vision: the epic-kitchens dataset. In: ECCV, pp. 720–736 (2018)

    Google Scholar 

  6. Damen, D., et al.: Rescaling egocentric vision: collection, pipeline and challenges for epic-kitchens-100. In: IJCV, pp. 1–23 (2022)

    Google Scholar 

  7. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: ICLR (2021)

    Google Scholar 

  8. Dosovitskiy, A., et al.: Flownet: learning optical flow with convolutional networks. In: ICCV, pp. 2758–2766 (2015)

    Google Scholar 

  9. Dutta, A., Zisserman, A.: The VIA annotation software for images, audio and video. In: ACM Multimedia, pp. 2276–2279 (2019)

    Google Scholar 

  10. Fan, H., et al.: Multiscale vision transformers. In: ICCV, pp. 6824–6835 (2021)

    Google Scholar 

  11. Furnari, A., Farinella, G.M.: What would you expect? Anticipating egocentric actions with rolling-unrolling LSTMs and modality attention. In: ICCV, pp. 6252–6261 (2019)

    Google Scholar 

  12. Furnari, A., Farinella, G.M.: Rolling-unrolling LSTMs for action anticipation from first-person video. IEEE TPAMI 43(11), 4021–4036 (2020)

    Article  Google Scholar 

  13. Gao, J., Yang, Z., Nevatia, R.: RED: reinforced encoder-decoder networks for action anticipation. In: BMVC. BMVA Press (2017)

    Google Scholar 

  14. Gebert, P., Roitberg, A., Haurilet, M., Stiefelhagen, R.: End-to-end prediction of driver intention using 3D convolutional neural networks. In: IEEE Intelligent Vehicles Symposium (IV), pp. 969–974 (2019)

    Google Scholar 

  15. Girase, H., Agarwal, N., Choi, C., Mangalam, K.: Latency matters: real-time action forecasting transformer. In: CVPR, pp. 18759–18769 (2023)

    Google Scholar 

  16. Girdhar, R., Grauman, K.: Anticipative video transformer. In: ICCV, pp. 13505–13515 (2021)

    Google Scholar 

  17. Girdhar, R., Singh, M., Ravi, N., van der Maaten, L., Joulin, A., Misra, I.: Omnivore: a single model for many visual modalities. In: CVPR, pp. 16102–16112 (2022)

    Google Scholar 

  18. Gong, D., Lee, J., Kim, M., Ha, S.J., Cho, M.: Future transformer for long-term action anticipation. In: CVPR, pp. 3052–3061 (2022)

    Google Scholar 

  19. Hara, K., Kataoka, H., Satoh, Y.: Can spatiotemporal 3D CNNs retrace the history of 2D CNNs and imagenet? In: CVPR, pp. 6546–6555 (2018)

    Google Scholar 

  20. Huang, D.-A., Kitani, K.M.: Action-reaction: forecasting the dynamics of human interaction. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 489–504. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_32

    Chapter  Google Scholar 

  21. Jain, A., Koppula, H.S., Soh, S., Raghavan, B., Saxena, A.: Car that knows before you do: anticipating maneuvers via learning temporal driving models. In: ICCV (2015)

    Google Scholar 

  22. Jain, A., Singh, A., Koppula, H.S., Soh, S., Saxena, A.: Recurrent neural networks for driver activity anticipation via sensory-fusion architecture. In: ICRA, pp. 3118–3125. IEEE (2016)

    Google Scholar 

  23. Kasahara, I., Stent, S., Park, H.S.: Look both ways: Self-supervising driver gaze estimation and road scene saliency. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13673, pp. 126–142. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19778-9_8

    Chapter  Google Scholar 

  24. Khairdoost, N., Shirpour, M., Bauer, M.A., Beauchemin, S.S.: Real-time driver maneuver prediction using LSTM. IEEE Trans. Intell. Veh. 5(4), 714–724 (2020)

    Article  Google Scholar 

  25. Koppula, H.S., Saxena, A.: Anticipating human activities using object affordances for reactive robotic response. IEEE TPAMI 14–29 (2015)

    Google Scholar 

  26. Li, Y., et al.: Mvitv2: improved multiscale vision transformers for classification and detection. In: CVPR, pp. 4804–4814 (2022)

    Google Scholar 

  27. Liu, C., Chen, Y., Tai, L., Ye, H., Liu, M., Shi, B.E.: A gaze model improves autonomous driving. In: ACM Symposium on Eye Tracking Research & Applications, pp. 1–5 (2019)

    Google Scholar 

  28. Liu, M., Tang, S., Li, Y., Rehg, J.M.: Forecasting human-object interaction: joint prediction of motor attention and actions in first person video. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 704–721. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_41

    Chapter  Google Scholar 

  29. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: ICLR (Poster) (2019)

    Google Scholar 

  30. Ma, Y., et al.: Cemformer: learning to predict driver intentions from in-cabin and external cameras via spatial-temporal transformers. In: ITSC, pp. 4960–4966. IEEE (2023)

    Google Scholar 

  31. Nagarajan, T., Li, Y., Feichtenhofer, C., Grauman, K.: Ego-topo: environment affordances from egocentric video. In: CVPR, pp. 163–172 (2020)

    Google Scholar 

  32. Nawhal, M., Jyothi, A.A., Mori, G.: Rethinking learning approaches for long-term action anticipation. In: ECCV, pp. 558–576 (2022)

    Google Scholar 

  33. Pal, A., Mondal, S., Christensen, H.I.: Looking at the right stuff-guided semantic-gaze for autonomous driving. In: CVPR, pp. 11883–11892 (2020)

    Google Scholar 

  34. Palazzi, A., Abati, D., Solera, F., Cucchiara, R., et al.: Predicting the driver’s focus of attention: the DR (eye) VE project. IEEE TPAMI 41(7), 1720–1733 (2018)

    Article  Google Scholar 

  35. Pang, B., Zha, K., Cao, H., Shi, C., Lu, C.: Deep RNN framework for visual sequential applications. In: CVPR, pp. 423–432 (2019)

    Google Scholar 

  36. Ramanishka, V., Chen, Y.T., Misu, T., Saenko, K.: Toward driving scene understanding: a dataset for learning driver behavior and causal reasoning. In: CVPR (2018)

    Google Scholar 

  37. Rong, Y., Akata, Z., Kasneci, E.: Driver intention anticipation based on in-cabin and driving scene monitoring. In: IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), pp. 1–8 (2020)

    Google Scholar 

  38. Sandler, M., Zhmoginov, A., Vladymyrov, M., Jackson, A.: Fine-tuning image transformers using learnable memory. In: CVPR, pp. 12155–12164 (2022)

    Google Scholar 

  39. Sener, F., Singhania, D., Yao, A.: Temporal aggregate representations for long-range video understanding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 154–171. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_10

    Chapter  Google Scholar 

  40. Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: NeurIPS, vol. 28 (2015)

    Google Scholar 

  41. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: NeurIPS, vol. 27 (2014)

    Google Scholar 

  42. Somasundaram, K., et al.: Project aria: a new tool for egocentric multi-modal AI research. CoRR (2023)

    Google Scholar 

  43. Sun, C., Myers, A., Vondrick, C., Murphy, K., Schmid, C.: Videobert: a joint model for video and language representation learning. In: ICCV, pp. 7464–7473 (2019)

    Google Scholar 

  44. Tziafas, G., Kasaei, H.: Early or late fusion matters: efficient RGB-D fusion in vision transformers for 3D object recognition. In: IROS, pp. 9558–9565. IEEE (2023)

    Google Scholar 

  45. Vaswani, A., et al.: Attention is all you need. In: NeurIPS, vol. 30 (2017)

    Google Scholar 

  46. Vondrick, C., Pirsiavash, H., Torralba, A.: Anticipating visual representations from unlabeled video. In: CVPR, pp. 98–106 (2016)

    Google Scholar 

  47. Wu, C.Y., et al.: Memvit: memory-augmented multiscale vision transformer for efficient long-term video recognition. In: CVPR, pp. 13587–13597 (2022)

    Google Scholar 

  48. Wu, M., et al.: Gaze-based intention anticipation over driving manoeuvres in semi-autonomous vehicles. In: IROS, pp. 6210–6216. IEEE (2019)

    Google Scholar 

  49. Xia, Y., Zhang, D., Kim, J., Nakayama, K., Zipser, K., Whitney, D.: Predicting driver attention in critical situations. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11365, pp. 658–674. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20873-8_42

    Chapter  Google Scholar 

  50. Yang, D., et al.: Aide: a vision-driven multi-view, multi-modal, multi-tasking dataset for assistive driving perception. In: ICCV, pp. 20459–20470 (2023)

    Google Scholar 

  51. Zhong, Z., Schneider, D., Voit, M., Stiefelhagen, R., Beyerer, J.: Anticipative feature fusion transformer for multi-modal action anticipation. In: CVPR, pp. 6068–6077 (2023)

    Google Scholar 

  52. Zhou, F., Yang, X.J., De Winter, J.C.: Using eye-tracking data to predict situation awareness in real time during takeover transitions in conditionally automated driving. IEEE TITS 23(3), 2284–2295 (2021)

    Google Scholar 

  53. Zhu, X., Xiong, Y., Dai, J., Yuan, L., Wei, Y.: Deep feature flow for video recognition. In: CVPR, pp. 2349–2358 (2017)

    Google Scholar 

Download references

Acknowledgements

This work is supported by iHub-Data and Mobility at IIIT Hyderabad and Project Aria from Meta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shankar Gangisetty .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1673 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wasi, A., Gangisetty, S., Rai, S.N., Jawahar, C.V. (2025). Early Anticipation of Driving Maneuvers. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15128. Springer, Cham. https://doi.org/10.1007/978-3-031-72897-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72897-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72896-9

  • Online ISBN: 978-3-031-72897-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics