Abstract
The problem of designing a privacy-preserving camera (PPC) is considered. Previous designs rely on a static point spread function (PSF), optimized to prevent detection of private visual information, such as recognizable facial features. However, the PSF can be easily recovered by measuring the camera response to a point light source, making these cameras vulnerable to PSF inversion attacks. A new dynamic privacy-preserving (DyPP) camera design is proposed to prevent such attacks. DyPP cameras rely on dynamic optical elements, such spatial light modulators, to implement a time-varying PSF, which changes from picture to picture. PSFs are drawn randomly with a learned manifold embedding, trained adversarially to simultaneously meet user-specified targets for privacy, such as face recognition accuracy, and task utility. Empirical evaluations on multiple privacy-preserving vision tasks demonstrate that the DyPP design is significantly more robust to PSF inversion attacks than previous PPCs. Furthermore, the hardware feasibility of the approach is validated by a proof-of-concept camera model.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
This assumes that standard protections are used to prevent attackers from hacking into the camera or recovering camera parameters if they do.
- 2.
While we focus on face recognition to measure privacy risk, the proposed camera design can be trivially extended to other privacy criteria, such as age, gender, or race classification accuracy.
- 3.
We ignored 25 identities without enough face image samples, due to invalid URLs.
References
Baek, S.H., et al.: Single-shot hyperspectral-depth imaging with learned diffractive optics. In: ICCV (2021)
Bitouk, D., Kumar, N., Dhillon, S., Belhumeur, P., Nayar, S.K.: Face Swapping: automatically replacing faces in photographs. ACM Trans. Graph. (ToG) (2008)
Bojarski, M., et al.: End to end learning for self-driving cars. arXiv preprint arXiv:1604.07316 (2016)
Bouchabou, D., Nguyen, S.M., Lohr, C., LeDuc, B., Kanellos, I.: A survey of human activity recognition in smart homes based on iot sensors algorithms: taxonomies, challenges, and opportunities with deep learning. Sensors 21(18), 6037 (2021)
Chakrabarti, A.: Learning sensor multiplexing design through back-propagation. In: NeurIPS (2016)
Chan, A.B., Liang, Z.S.J., Vasconcelos, N.: Privacy preserving crowd monitoring: counting people without people models or tracking. In: CVPR, pp. 1–7. IEEE (2008)
Chang, J., Sitzmann, V., Dun, X., Heidrich, W., Wetzstein, G.: Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification. Sci. Rep. 8(1), 12324 (2018)
Chang, J., Wetzstein, G.: Deep optics for monocular depth estimation and 3d object detection. In: ICCV (2019)
Chinomi, K., Nitta, N., Ito, Y., Babaguchi, N.: PriSurv: privacy protected video surveillance system using adaptive visual abstraction. In: Satoh, S., Nack, F., Etoh, M. (eds.) MMM 2008. LNCS, vol. 4903, pp. 144–154. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77409-9_14
Chugunov, I., Baek, S.H., Fu, Q., Heidrich, W., Heide, F.: Mask-tof: learning microlens masks for flying pixel correction in time-of-flight imaging. In: CVPR (2021)
Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons, Hoboken (1999)
Criminisi, A., Perez, P., Toyama, K.: Object removal by exemplar-based inpainting. In: CVPR (2003)
Criminisi, A., Pérez, P., Toyama, K.: Region filling and object removal by exemplar-based image inpainting. IEEE Trans. Image Process. (TIP) 13(9), 1200–1212 (2004)
Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: additive angular margin loss for deep face recognition. In: CVPR (2019)
Ding, X., Lin, Z., He, F., Wang, Y., Huang, Y.: A deeply-recursive convolutional network for crowd counting. In: ICASSP (2018)
Dong, J., Roth, S., Schiele, B.: Deep wiener deconvolution: wiener meets deep learning for image deblurring. In: NeurIPS (2020)
Duta, I.C., Liu, L., Zhu, F., Shao, L.: Improved residual networks for image and video recognition. In: ICPR. IEEE (2021)
Fan, J., Luo, H., Hacid, M.S., Bertino, E.: A novel approach for privacy-preserving video sharing. In: ACM International Conference on Information and Knowledge Management (CIKM) (2005)
Frome, A., et al.: Large-scale privacy protection in google street view. In: ICCV (2009)
Gao, H., Tao, X., Shen, X., Jia, J.: Dynamic scene deblurring with parameter selective sharing and nested skip connections. In: CVPR (2019)
Goodman, J.W.: Introduction to Fourier Optics, 4th edn. W. H. Freeman (2017)
Grigorescu, S., Trasnea, B., Cocias, T., Macesanu, G.: A survey of deep learning techniques for autonomous driving. J. Field Rob. 37(3), 362–386 (2020)
Harwit, M., Sloane, N.J.A.: Hadamard transform optics (1979)
Rishabh, S., Mayank, P., Swapnil, G.: Smart home automation using computer vision and segmented image processing. In: 2019 International Conference on Communication and Signal Processing (ICCSP) (2019)
Hassan, R.H., Shaffer, P., Crandall, D., Apu Kapadia, E.T.: Cartooning for enhanced privacy in lifelogging and streaming videos. In: CVPR Workshops (2017)
He, L., Wang, G., Hu, Z.: Learning depth from single images with deep neural network embedding focal length. IEEE Trans. Image Process. (TIP) 27(9), 4676–4689 (2018)
Hershko, E., Weiss, L.E., Michaeli, T., Shechtman, Y.: Multicolor localization microscopy and point-spread-function engineering by deep learning. Opt. Express 27(5), 6158–6183 (2019)
Hinojosa, C., Marquez, M., Arguello, H., Adeli, E., Fei-Fei, L., Niebles, J.C.: Privhar: Recognizing human actions from privacy-preserving lens. In: ECCV 2022. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-19772-7_19
Hinojosa, C., Niebles, J.C., Arguello, H.: Learning privacy-preserving optics for human pose estimation. In: ICCV (2021)
Hu, Y., et al.: Planning-oriented autonomous driving. In: CVPR (2023)
Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. Technical Report 07-49, University of Massachusetts, Amherst (2007)
Jeon, D.S., et al.: Compact snapshot hyperspectral imaging with diffracted rotation. ACM Trans. Graph. (ToG) 38(4) (2019)
Kellman, M., Bostan, E., Chen, M., Waller, L.: Data-driven design for fourier ptychographic microscopy. In: IEEE International Conference on Computational Photography (ICCP), pp. 1–8. IEEE (2019)
Kitahara, I., Kogure, K., Hagita, N.: Stealth vision for protecting privacy. In: ICPR, vol. 4, pp. 404–407. IEEE (2004)
Kumar, N., Berg, A.C., Belhumeur, P.N., Nayar, S.K.: Attribute and simile classifiers for face verification. In: ICCV (2009)
Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: Deblurgan: blind motion deblurring using conditional adversarial networks. In: CVPR (2018)
Li, L., Wang, L., Song, W., Zhang, L., Xiong, Z., Huang, H.: Quantization-aware deep optics for diffractive snapshot hyperspectral imaging. In: CVPR (2022)
Lin, H., Ma, Z., Ji, R., Wang, Y., Hong, X.: Boosting crowd counting via multifaceted attention. In: CVPR (2022)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: Sphereface: deep hypersphere embedding for face recognition. In: CVPR (2017)
Maji, D., Nagori, S., Mathew, M., Poddar, D.: Yolo-pose: enhancing yolo for multi person pose estimation using object keypoint similarity loss. In: CVPRW (2022)
Marco, J., et al.: Deeptof: off-the-shelf real-time correction of multipath interference in time-of-flight imaging. ACM Trans. Graph. (ToG) 36(6), 1–12 (2017)
Metzler, C.A., Ikoma, H., Peng, Y., Wetzstein, G.: Deep optics for single-shot high-dynamic-range imaging. In: CVPR (2020)
Moschoglou, S., Papaioannou, A., Sagonas, C., Deng, J., Kotsia, I., Zafeiriou, S.: Agedb: the first manually collected, in-the-wild age database. In: CVPRW (2017)
Neustaedter, C., Greenberg, S., Boyle, M.: Blur filtration fails to preserve privacy for home-based video conferencing. ACM Trans. Comput.-Hum. Interact. 13(1), 1–36 (2006)
Nimisha, T.M., Kumar Singh, A., Rajagopalan, A.N.: Blur-invariant deep learning for blind-deblurring. In: ICCV (2017)
Noll, R.J.: Zernike polynomials and atmospheric turbulence. J. Opt. Soc. Am. 66(3), 207–211 (1976)
Orekondy, T., Schiele, B., Fritz, M.: Towards a visual privacy advisor: understanding and predicting privacy risks in images. In: ICCV (2017)
Padilla-López, J.R., Chaaraoui, A.A., Flórez-Revuelta, F.: Visual privacy protection methods: a survey. Expert Syst. Appl. 42(9), 4177–4195 (2015)
Pichler, G., Colombo, P.J.A., Boudiaf, M., Koliander, G., Piantanida, P.: A differential entropy estimator for training neural networks. In: ICML (2022)
Pittaluga, F., Koppal, S.J.: Privacy preserving optics for miniature vision sensors. In: CVPR (2015)
Pittaluga, F., Koppal, S.J.: Pre-capture privacy for small vision sensors. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 39(11), 2215–2226 (2016)
Pittaluga, F., Zivkovic, A., Koppal, S.J.: Sensor-level privacy for thermal cameras. In: 2016 IEEE International Conference on Computational Photography (ICCP), pp. 1–12. IEEE (2016)
Ren, Z., Lee, Y.J., Ryoo, M.S.: Learning to anonymize faces for privacy preserving action detection. In: ECCV (2018)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)
Ryoo, M., Kim, K., Yang, H.: Extreme low resolution activity recognition with multi-siamese embedding learning. In: AAAI (2018)
Ryoo, M., Rothrock, B., Fleming, C., Yang, H.J.: Privacy-preserving human activity recognition from extreme low resolution. In: AAAI (2017)
Sitzmann, V., et al.: End-to-end optimization of optics and image processing for achromatic extended depth of field and super-resolution imaging. ACM Trans. Graph. (TOG) 37(4), 1–13 (2018)
Su, S., Heide, F., Wetzstein, G., Heidrich, W.: Deep end-to-end time-of-flight imaging. In: CVPR (2018)
Tasneem, Z., et al.: Learning phase mask for privacy-preserving passive depth estimation. In: ECCV 2022. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-20071-7_30
Ultralytics: YOLOv5: A state-of-the-art real-time object detection system (2021). https://docs.ultralytics.com
Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. In: CVPR (2018)
Vogel, C.R.: Computational methods for inverse problems. SIAM (2002)
Wetzstein, G., Ikoma, H., Metzler, C., Peng, Y.: Deep optics: learning cameras and optical computing systems. In: 2020 54th Asilomar Conference on Signals, Systems, and Computers, pp. 1313–1315. IEEE (2020)
Wu, Z., Wang, H., Wang, Z., Jin, H., Wang, Z.: Privacy-preserving deep action recognition: an adversarial learning framework and a new dataset. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 44(4), 2126–2139 (2020)
Yu, J., de Antonio, A., Villalba-Mora, E.: Deep learning (CNN, RNN) applications for smart homes: a systematic review. Computers 11(2), 26 (2022)
Zhang, Y., Zhou, D., Chen, S., Gao, S., Ma, Y.: Single-image crowd counting via multi-column convolutional neural network. In: CVPR (2016)
Acknowledgements
We thank Carlos Hinojosa for sharing the PSF of PP-HPE. This work was partially funded by NSF award IIS-2303153, a gift from Qualcomm, and NVIDIA GPU donations. We also acknowledge and thank the use of the Nautilus platform for some of the experiments discussed above.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Cheng, J., Dai, X., Wan, J., Antipa, N., Vasconcelos, N. (2025). Learning a Dynamic Privacy-Preserving Camera Robust to Inversion Attacks. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15128. Springer, Cham. https://doi.org/10.1007/978-3-031-72897-6_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-72897-6_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72896-9
Online ISBN: 978-3-031-72897-6
eBook Packages: Computer ScienceComputer Science (R0)