Learning Unified Reference Representation for Unsupervised Multi-class Anomaly Detection | SpringerLink
Skip to main content

Learning Unified Reference Representation for Unsupervised Multi-class Anomaly Detection

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15125))

Included in the following conference series:

  • 172 Accesses

Abstract

In the field of multi-class anomaly detection, reconstruction-based methods derived from single-class anomaly detection face the well-known challenge of “learning shortcuts”, wherein the model fails to learn the patterns of normal samples as it should, opting instead for shortcuts such as identity mapping or artificial noise elimination. Consequently, the model becomes unable to reconstruct genuine anomalies as normal instances, resulting in a failure of anomaly detection. To counter this issue, we present a novel unified feature reconstruction-based anomaly detection framework termed RLR (Reconstruct features from a Learnable Reference representation). Unlike previous methods, RLR utilizes learnable reference representations to compel the model to learn normal feature patterns explicitly, thereby prevents the model from succumbing to the “learning shortcuts” issue. Additionally, RLR incorporates locality constraints into the learnable reference to facilitate more effective normal pattern capture and utilizes a masked learnable key attention mechanism to enhance robustness. Evaluation of RLR on the 15-category MVTec-AD dataset and the 12-category VisA dataset shows superior performance compared to state-of-the-art methods under the unified setting. Code is available at RLR.

L. He, Z. Jiang, J. Peng and W. Zhu—Equal contribution.

This work was supported by Natural Science Foundation of China under contract 62171139.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8465
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: MVTec AD–a comprehensive real-world dataset for unsupervised anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9592–9600 (2019)

    Google Scholar 

  2. Bergmann, P., Fauser, M., Sattlegger, D., Steger, C.: Uninformed students: student-teacher anomaly detection with discriminative latent embeddings. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4183–4192 (2020)

    Google Scholar 

  3. Defard, T., Setkov, A., Loesch, A., Audigier, R.: PaDiM: a patch distribution modeling framework for anomaly detection and localization. In: Del Bimbo, A., et al. (eds.) ICPR 2021. LNCS, vol. 12664, pp. 475–489. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68799-1_35

    Chapter  Google Scholar 

  4. Deng, H., Li, X.: Anomaly detection via reverse distillation from one-class embedding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9737–9746 (2022)

    Google Scholar 

  5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  6. Fernando, T., Gammulle, H., Denman, S., Sridharan, S., Fookes, C.: Deep learning for medical anomaly detection-a survey. ACM Comput. Surv. (CSUR) 54(7), 1–37 (2021)

    Article  Google Scholar 

  7. Goodfellow, I., et al.: Generative adversarial networks. Commun. ACM 63(11), 139–144 (2020)

    Article  MathSciNet  Google Scholar 

  8. Gudovskiy, D., Ishizaka, S., Kozuka, K.: CFLOW-AD: real-time unsupervised anomaly detection with localization via conditional normalizing flows. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 98–107 (2022)

    Google Scholar 

  9. He, B., et al.: Deep transformers without shortcuts: modifying self-attention for faithful signal propagation. In: The Eleventh International Conference on Learning Representations (2023)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  11. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851 (2020)

    Google Scholar 

  12. Lee, Y., Kang, P.: AnoViT: unsupervised anomaly detection and localization with vision transformer-based encoder-decoder. IEEE Access 10, 46717–46724 (2022)

    Article  Google Scholar 

  13. Lei, J., Hu, X., Wang, Y., Liu, D.: PyramidFlow: high-resolution defect contrastive localization using pyramid normalizing flow. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14143–14152 (2023)

    Google Scholar 

  14. Liu, Z., Zhou, Y., Xu, Y., Wang, Z.: SimpleNet: a simple network for image anomaly detection and localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20402–20411 (2023)

    Google Scholar 

  15. Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L.: VT-ADL: a vision transformer network for image anomaly detection and localization. In: 2021 IEEE 30th International Symposium on Industrial Electronics (ISIE), pp. 01–06. IEEE (2021)

    Google Scholar 

  16. Pirnay, J., Chai, K.: Inpainting transformer for anomaly detection. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds.) ICIAP 2022. LNCS, vol. 13232, pp. 394–406. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06430-2_33

    Chapter  Google Scholar 

  17. Rippel, O., Mertens, P., Merhof, D.: Modeling the distribution of normal data in pre-trained deep features for anomaly detection. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 6726–6733. IEEE (2021)

    Google Scholar 

  18. Roth, K., Pemula, L., Zepeda, J., Schölkopf, B., Brox, T., Gehler, P.: Towards total recall in industrial anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14318–14328 (2022)

    Google Scholar 

  19. Rudolph, M., Wandt, B., Rosenhahn, B.: Same same but differnet: semi-supervised defect detection with normalizing flows. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1907–1916 (2021)

    Google Scholar 

  20. Rudolph, M., Wehrbein, T., Rosenhahn, B., Wandt, B.: Fully convolutional cross-scale-flows for image-based defect detection. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 1088–1097 (2022)

    Google Scholar 

  21. Salehi, M., Sadjadi, N., Baselizadeh, S., Rohban, M.H., Rabiee, H.R.: Multiresolution knowledge distillation for anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14902–14912 (2021)

    Google Scholar 

  22. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  23. Tien, T.D., et al.: Revisiting reverse distillation for anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 24511–24520 (2023)

    Google Scholar 

  24. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  25. Wang, C., et et al.: Real-IAD: a real-world multi-view dataset for benchmarking versatile industrial anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22883–22892 (2024)

    Google Scholar 

  26. Yan, X., Zhang, H., Xu, X., Hu, X., Heng, P.A.: Learning semantic context from normal samples for unsupervised anomaly detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 3110–3118 (2021)

    Google Scholar 

  27. Yao, X., Li, R., Qian, Z., Luo, Y., Zhang, C.: Focus the discrepancy: intra-and inter-correlation learning for image anomaly detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6803–6813 (2023)

    Google Scholar 

  28. Yi, J., Yoon, S.: Patch SVDD: patch-level SVDD for anomaly detection and segmentation. In: Proceedings of the Asian Conference on Computer Vision (2020)

    Google Scholar 

  29. You, Z., et al.: A unified model for multi-class anomaly detection. In: Advances in Neural Information Processing Systems, vol. 35, pp. 4571–4584 (2022)

    Google Scholar 

  30. You, Z., Yang, K., Luo, W., Cui, L., Zheng, Y., Le, X.: ADTR: anomaly detection transformer with feature reconstruction. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds.) ICONIP 2022. LNCS, vol. 13625, pp. 298–310. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30111-7_26

    Chapter  Google Scholar 

  31. Zavrtanik, V., Kristan, M., Skočaj, D.: Draem-a discriminatively trained reconstruction embedding for surface anomaly detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8330–8339 (2021)

    Google Scholar 

  32. Zhang, H., Wang, Z., Wu, Z., Jiang, Y.G.: DiffusionAD: denoising diffusion for anomaly detection. arXiv preprint arXiv:2303.08730 (2023)

  33. Zhang, J., et al.: ADer: a comprehensive benchmark for multi-class visual anomaly detection. arXiv preprint arXiv:2406.03262 (2024)

  34. Zhang, J., et al.: Learning feature inversion for multi-class anomaly detection under general-purpose coco-ad benchmark. arXiv preprint arXiv:2404.10760 (2024)

  35. Zhao, Y.: Just noticeable learning for unsupervised anomaly localization and detection. In: 2022 IEEE International Conference on Multimedia and Expo (ICME), pp. 01–06. IEEE (2022)

    Google Scholar 

  36. Zhao, Y.: OmniAL: a unified CNN framework for unsupervised anomaly localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3924–3933 (2023)

    Google Scholar 

  37. Zou, Y., Jeong, J., Pemula, L., Zhang, D., Dabeer, O.: SPot-the-difference self-supervised pre-training for anomaly detection and segmentation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13690, pp. 392–408. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20056-4_23

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mingmin Chi , Yabiao Wang or Chengjie Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3246 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, L. et al. (2025). Learning Unified Reference Representation for Unsupervised Multi-class Anomaly Detection. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15125. Springer, Cham. https://doi.org/10.1007/978-3-031-72855-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72855-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72854-9

  • Online ISBN: 978-3-031-72855-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics