Abstract
Most existing neural video codecs (NVCs) only extract short-term temporal context by optical flow-based motion compensation. However, such short-term temporal context suffers from error propagation and lacks awareness of long-term relevant information. This limits their performance, particularly in a long prediction chain. In this paper, we address the issue by facilitating the synergy of both long-term and short-term temporal contexts during feature propagation. Specifically, we introduce our DCVC-LCG framework, which use a Long-term temporal Context Gathering (LCG) module to search the diverse and relevant context from the long-term reference feature. The searched long-term context is leveraged to refine the feature propagation by integrating into the short-term reference feature, which can enhance the reconstruction quality and mitigate the propagation errors. During the search process, how to distinguish the helpful context and filter the irrelevant information is challenging and vital. To this end, we cluster the reference feature and perform the searching process in an intra-cluster fashion to improve the context mining. This synergistic integration of long-term and short-term temporal contexts can significantly enhance the temporal correlation modeling. Additionally, to improve the probability estimation in variable-bitrate coding, we introduce the quantization parameter as an extra prior to the entropy model. Comprehensive evaluations demonstrate the effectiveness of our method, which offers an average 11.3% bitrate saving over the ECM on 1080p video datasets, using the single intra-frame setting.
L. Qi and Z. Jia—This work was done when Linfeng Qi and Zhaoyang Jia were interns at Microsoft Research Asia.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Original vimeo links. https://github.com/anchen1011/toflow/blob/master/data/original_vimeo_links.txt
Sullivan, G.J., Wiegand, T.: Rate-distortion optimization for video compression. IEEE Sig. Process. Mag. 15(6), 74–90 (1998)
Agustsson, E., Minnen, D., Johnston, N., Balle, J., Hwang, S.J., Toderici, G.: Scale-space flow for end-to-end optimized video compression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8503–8512 (2020)
Agustsson, E., Tschannen, M., Mentzer, F., Timofte, R., Gool, L.V.: Generative adversarial networks for extreme learned image compression. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 221–231 (2019)
Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., Schmid, C.: ViViT: a video vision transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6836–6846 (2021)
Bjontegaard, G.: Calculation of average PSNR differences between RD-curves. VCEG-M33 (2001)
Bossen, F., et al.: Common test conditions and software reference configurations. JCTVC-L1100 12(7), 1 (2013)
Bross, B., et al.: Overview of the versatile video coding (VVC) standard and its applications. IEEE Trans. Circ. Syst. Video Technol. 31(10), 3736–3764 (2021)
Chen, Z., Gu, S., Lu, G., Xu, D.: Exploiting intra-slice and inter-slice redundancy for learning-based lossless volumetric image compression. IEEE Trans. Image Process. 31, 1697–1707 (2022)
Chen, Z., et al.: Neural video compression with spatio-temporal cross-covariance transformers. In: Proceedings of the 31st ACM International Conference on Multimedia, pp. 8543–8551 (2023)
Dai, J., et al.: Deformable convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 764–773 (2017)
Dey, R., Salem, F.M.: Gate-variants of gated recurrent unit (GRU) neural networks. In: 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 1597–1600. IEEE (2017)
Djelouah, A., Campos, J., Schaub-Meyer, S., Schroers, C.: Neural inter-frame compression for video coding. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6421–6429 (2019)
Gao, Y., Li, J., Chu, L., Lu, Y.: Implicit motion function. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19278–19289 (2024)
Ho, Y.H., Chang, C.P., Chen, P.Y., Gnutti, A., Peng, W.H.: CANF-VC: conditional augmented normalizing flows for video compression. arXiv preprint arXiv:2207.05315 (2022)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Hu, Z., Chen, Z., Xu, D., Lu, G., Ouyang, W., Gu, S.: Improving deep video compression by resolution-adaptive flow coding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 193–209. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_12
Hu, Z., Lu, G., Guo, J., Liu, S., Jiang, W., Xu, D.: Coarse-to-fine deep video coding with hyperprior-guided mode prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5921–5930 (2022)
Hu, Z., Lu, G., Xu, D.: FVC: a new framework towards deep video compression in feature space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1502–1511 (2021)
Huang, C., Li, J., Chu, L., Liu, D., Lu, Y.: Disentangle propagation and restoration for efficient video recovery. In: Proceedings of the 31st ACM International Conference on Multimedia, pp. 8336–8345 (2023)
Huang, C., Li, J., Chu, L., Liu, D., Lu, Y.: Arbitrary-scale video super-resolution guided by dynamic context. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, pp. 2294–2302 (2024)
Huang, C., Li, J., Li, B., Liu, D., Lu, Y.: Neural compression-based feature learning for video restoration. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5872–5881 (2022)
Jampani, V., Sun, D., Liu, M.Y., Yang, M.H., Kautz, J.: Superpixel sampling networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 352–368 (2018)
Jia, Z., Li, J., Li, B., Li, H., Lu, Y.: Generative latent coding for ultra-low bitrate image compression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 26088–26098 (2024)
Kim, J.H., Heo, B., Lee, J.S.: Joint global and local hierarchical priors for learned image compression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5992–6001 (2022)
Ladune, T., Philippe, P., Hamidouche, W., Zhang, L., Déforges, O.: Optical flow and mode selection for learning-based video coding. In: 2020 IEEE 22nd International Workshop on Multimedia Signal Processing (MMSP), pp. 1–6. IEEE (2020)
Ladune, T., Philippe, P., Hamidouche, W., Zhang, L., Déforges, O.: Conditional coding and variable bitrate for practical learned video coding. arXiv preprint arXiv:2104.09103 (2021)
Ladune, T., Philippe, P., Hamidouche, W., Zhang, L., Déforges, O.: Conditional coding for flexible learned video compression. arXiv preprint arXiv:2104.07930 (2021)
Li, J., Li, B., Lu, Y.: Deep contextual video compression. In: Advances in Neural Information Processing Systems 34 (2021)
Li, J., Li, B., Lu, Y.: Hybrid spatial-temporal entropy modelling for neural video compression. In: Proceedings of the 30th ACM International Conference on Multimedia (2022)
Li, J., Li, B., Lu, Y.: Neural video compression with diverse contexts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22616–22626 (2023)
Li, J., Li, B., Lu, Y.: Neural video compression with feature modulation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024, Seattle, WA, USA, 17–21 June 2024 (2024)
Li, J., Li, B., Xu, J., Xiong, R.: Diversity-based reference picture management for low delay screen content coding. IEEE Trans. Circ. Syst. Video Technol. 28(6), 1369–1378 (2017)
Lin, J., Liu, D., Li, H., Wu, F.: M-LVC: multiple frames prediction for learned video compression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3546–3554 (2020)
Liu, B., Chen, Y., Machineni, R.C., Liu, S., Kim, H.S.: MMVC: learned multi-mode video compression with block-based prediction mode selection and density-adaptive entropy coding. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18487–18496 (2023)
Liu, D., Zhao, D., Ji, X., Gao, W.: Dual frame motion compensation with optimal long-term reference frame selection and bit allocation. IEEE Trans. Circ. Syst. Video Technol. 20(3), 325–339 (2009)
Liu, H., et al.: Neural video coding using multiscale motion compensation and spatiotemporal context model. IEEE Trans. Circ. Syst. Video Technol. 31(8), 3182–3196 (2020)
Liu, H., Shen, H., Huang, L., Lu, M., Chen, T., Ma, Z.: Learned video compression via joint spatial-temporal correlation exploration. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 11580–11587 (2020)
Lu, G., et al.: Content adaptive and error propagation aware deep video compression. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 456–472. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_27
Lu, G., Ouyang, W., Xu, D., Zhang, X., Cai, C., Gao, Z.: DVC: an end-to-end deep video compression framework. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11006–11015 (2019)
Lu, G., Zhang, X., Ouyang, W., Chen, L., Gao, Z., Xu, D.: An end-to-end learning framework for video compression. IEEE Trans. Pattern Anal. Mach. Intell. 43(10), 3292–3308 (2020)
Ma, W., Li, J., Li, B., Lu, Y.: Uncertainty-aware deep video compression with ensembles. IEEE Trans. Multimedia 26, 7863–7872 (2024)
Ma, X., et al.: Image as set of points. In: The Eleventh International Conference on Learning Representations (2023)
Mentzer, F., et al.: VCT: a video compression transformer. arXiv preprint arXiv:2206.07307 (2022)
Mentzer, F., Toderici, G.D., Tschannen, M., Agustsson, E.: High-fidelity generative image compression. In: Advances in Neural Information Processing Systems 33, pp. 11913–11924 (2020)
Mercat, A., Viitanen, M., Vanne, J.: UVG dataset: 50/120fps 4K sequences for video codec analysis and development. In: Proceedings of the 11th ACM Multimedia Systems Conference, pp. 297–302 (2020)
Neimark, D., Bar, O., Zohar, M., Asselmann, D.: Video transformer network. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3163–3172 (2021)
Paul, M., Lin, W., Lau, C.T., Lee, B.S.: A long-term reference frame for hierarchical B-picture-based video coding. IEEE Trans. Circ. Syst. Video Technol. 24(10), 1729–1742 (2014)
Qi, L., Li, J., Li, B., Li, H., Lu, Y.: Motion information propagation for neural video compression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6111–6120 (2023)
Rippel, O., Anderson, A.G., Tatwawadi, K., Nair, S., Lytle, C., Bourdev, L.: ELF-VC: efficient learned flexible-rate video coding. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14479–14488 (2021)
Rippel, O., Nair, S., Lew, C., Branson, S., Anderson, A.G., Bourdev, L.: Learned video compression. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3454–3463 (2019)
Sheng, X., Li, J., Li, B., Li, L., Liu, D., Lu, Y.: Temporal context mining for learned video compression. IEEE Trans. Multimedia 25, 7311–7322 (2022)
Sullivan, G.J., Ohm, J.R., Han, W.J., Wiegand, T.: Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Circ. Syst. Video Technol. 22(12), 1649–1668 (2012)
Tiwari, M., Cosman, P.C.: Selection of long-term reference frames in dual-frame video coding using simulated annealing. IEEE Sig. Process. Lett. 15, 249–252 (2008)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems 30 (2017)
Wang, G.H., Li, J., Li, B., Lu, Y.: EVC: towards real-time neural image compression with mask decay. In: International Conference on Learning Representations (2023)
Wang, H., et al.: MCL-JCV: a JND-based H.264/AVC video quality assessment dataset. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 1509–1513. IEEE (2016)
Wiegand, T., Zhang, X., Girod, B.: Long-term memory motion-compensated prediction. IEEE Trans. Circ. Syst. Video Technol. 9(1), 70–84 (1999)
Xiang, J., Tian, K., Zhang, J.: MIMT: masked image modeling transformer for video compression. In: The Eleventh International Conference on Learning Representations (2022)
Xie, F., Chu, L., Li, J., Lu, Y., Ma, C.: VideoTrack: learning to track objects via video transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 22826–22835 (2023)
Xu, X., Wang, J., Ming, X., Lu, Y.: Towards robust video object segmentation with adaptive object calibration. In: Proceedings of the 30th ACM International Conference on Multimedia, pp. 2709–2718 (2022)
Xue, T., Chen, B., Wu, J., Wei, D., Freeman, W.T.: Video enhancement with task-oriented flow. Int. J. Comput. Vis. 127(8), 1106–1125 (2019)
Yang, R., Mentzer, F., Van Gool, L., Timofte, R.: Learning for video compression with recurrent auto-encoder and recurrent probability model. IEEE J. Sel. Top. Sig. Process. 15(2), 388–401 (2020)
Yang, R., Yang, Y., Marino, J., Mandt, S.: Hierarchical autoregressive modeling for neural video compression. arXiv preprint arXiv:2010.10258 (2020)
Yang, Z., Wei, Y., Yang, Y.: Collaborative video object segmentation by foreground-background integration. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 332–348. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_20
Yu, Q., et al.: \(k\)-means mask transformer. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13689, pp. 288–307. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19818-2_17
Zhang, Y., Duan, Z., Lu, M., Ding, D., Zhu, F., Ma, Z.: Another way to the top: exploit contextual clustering in learned image coding (2024)
Zhao, J., Li, B., Li, J., Xiong, R., Lu, Y.: A universal encoder rate distortion optimization framework for learned compression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1880–1884 (2021)
Zhao, J., Li, B., Li, J., Xiong, R., Lu, Y.: A universal optimization framework for learning-based image codec. ACM Trans. Multimed. Comput. Commun. Appl. 20(1), 1–19 (2023)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Qi, L., Jia, Z., Li, J., Li, B., Li, H., Lu, Y. (2025). Long-Term Temporal Context Gathering for Neural Video Compression. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15124. Springer, Cham. https://doi.org/10.1007/978-3-031-72848-8_18
Download citation
DOI: https://doi.org/10.1007/978-3-031-72848-8_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72847-1
Online ISBN: 978-3-031-72848-8
eBook Packages: Computer ScienceComputer Science (R0)