SafaRi: Adaptive Sequence Transformer for Weakly Supervised Referring Expression Segmentation | SpringerLink
Skip to main content

SafaRi: Adaptive Sequence Transformer for Weakly Supervised Referring Expression Segmentation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15102))

Included in the following conference series:

  • 122 Accesses

Abstract

Referring Expression Segmentation (RES) aims to provide a segmentation mask of the target object in an image referred to by the text (i.e., referring expression). Existing methods require large-scale mask annotations. Moreover, such approaches do not generalize well to unseen/zero-shot scenarios. To address the aforementioned issues, we propose a weakly-supervised bootstrapping architecture for RES with several new algorithmic innovations. To the best of our knowledge, ours is the first approach that considers only a fraction of both mask and box annotations (shown in Fig. 1 and Table 1) for training. To enable principled training of models in such low-annotation settings, improve image-text region-level alignment, and further enhance spatial localization of the target object in the image, we propose Cross-modal Fusion with Attention Consistency module. For automatic pseudo-labeling of unlabeled samples, we introduce a novel Mask Validity Filtering routine based on a spatially aware zero-shot proposal scoring approach. Extensive experiments show that with just 30% annotations, our model SafaRi achieves 59.31 and 48.26 mIoUs as compared to 58.93 and 48.19 mIoUs obtained by the fully-supervised SOTA method SeqTR respectively on RefCOCO+@testA and RefCOCO+testB datasets. SafaRi also outperforms SeqTR by 11.7% (on RefCOCO+testA) and 19.6% (on RefCOCO+testB) in a fully-supervised setting and demonstrates strong generalization capabilities in unseen/zero-shot tasks. Our project page can be found at https://sayannag.github.io/safari_eccv2024/.

S. Nag—Work done during internship at Adobe Research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14871
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 18589
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bolya, D., Zhou, C., Xiao, F., Lee, Y.J.: YOLACT: real-time instance segmentation. In: ICCV, pp. 9157–9166 (2019)

    Google Scholar 

  2. Botach, A., Zheltonozhskii, E., Baskin, C.: End-to-end referring video object segmentation with multimodal transformers. In: CVPR, pp. 4985–4995 (2022)

    Google Scholar 

  3. Chen, D.J., Jia, S., Lo, Y.C., Chen, H.T., Liu, T.L.: See-through-text grouping for referring image segmentation. In: ICCV, pp. 7454–7463 (2019)

    Google Scholar 

  4. Chen, K., et al.: Hybrid task cascade for instance segmentation. In: CVPR, pp. 4974–4983 (2019)

    Google Scholar 

  5. Chen, Y.-C., et al.: UNITER: UNiversal image-TExt representation learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12375, pp. 104–120. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58577-8_7

    Chapter  Google Scholar 

  6. Dai, J., He, K., Sun, J.: Instance-aware semantic segmentation via multi-task network cascades. In: CVPR, pp. 3150–3158 (2016)

    Google Scholar 

  7. Ding, H., Liu, C., Wang, S., Jiang, X.: Vision-language transformer and query generation for referring segmentation. In: ICCV, pp. 16321–16330 (2021)

    Google Scholar 

  8. Dou, Z.Y., et al.: An empirical study of training end-to-end vision-and-language transformers. In: CVPR, pp. 18166–18176 (2022)

    Google Scholar 

  9. Feng, G., Hu, Z., Zhang, L., Lu, H.: Encoder fusion network with co-attention embedding for referring image segmentation. In: CVPR, pp. 15506–15515 (2021)

    Google Scholar 

  10. Gavrilyuk, K., Ghodrati, A., Li, Z., Snoek, C.G.: Actor and action video segmentation from a sentence. In: CVPR, pp. 5958–5966 (2018)

    Google Scholar 

  11. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV, pp. 2961–2969 (2017)

    Google Scholar 

  12. Hu, R., Rohrbach, M., Darrell, T.: Segmentation from natural language expressions. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 108–124. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_7

    Chapter  Google Scholar 

  13. Hu, Z., Feng, G., Sun, J., Zhang, L., Lu, H.: Bi-directional relationship inferring network for referring image segmentation. In: CVPR, pp. 4424–4433 (2020)

    Google Scholar 

  14. Huang, S., et al.: Referring image segmentation via cross-modal progressive comprehension. In: CVPR, pp. 10488–10497 (2020)

    Google Scholar 

  15. Hui, T., et al.: Linguistic structure guided context modeling for referring image segmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 59–75. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58607-2_4

    Chapter  Google Scholar 

  16. Jing, Y., Kong, T., Wang, W., Wang, L., Li, L., Tan, T.: Locate then segment: a strong pipeline for referring image segmentation. In: CVPR, pp. 9858–9867 (2021)

    Google Scholar 

  17. Kamath, A., Singh, M., LeCun, Y., Synnaeve, G., Misra, I., Carion, N.: MDETR-modulated detection for end-to-end multi-modal understanding. In: ICCV, pp. 1780–1790 (2021)

    Google Scholar 

  18. Khoreva, A., Rohrbach, A., Schiele, B.: Video object segmentation with language referring expressions. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11364, pp. 123–141. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20870-7_8

    Chapter  Google Scholar 

  19. Kim, D., Kim, N., Lan, C., Kwak, S.: Shatter and gather: learning referring image segmentation with text supervision. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15547–15557 (2023)

    Google Scholar 

  20. Kim, N., Kim, D., Lan, C., Zeng, W., Kwak, S.: Restr: convolution-free referring image segmentation using transformers. In: CVPR, pp. 18145–18154 (2022)

    Google Scholar 

  21. Lee, J., Lee, S., Nam, J., Yu, S., Do, J., Taghavi, T.: Weakly supervised referring image segmentation with intra-chunk and inter-chunk consistency. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 21870–21881 (2023)

    Google Scholar 

  22. Li, J., Selvaraju, R., Gotmare, A., Joty, S., Xiong, C., Hoi, S.C.H.: Align before fuse: vision and language representation learning with momentum distillation. In: NeurIPS (2021)

    Google Scholar 

  23. Li, L.H., et al.: Grounded language-image pre-training. In: CVPR, pp. 10965–10975 (2022)

    Google Scholar 

  24. Li, M., Sigal, L.: Referring transformer: a one-step approach to multi-task visual grounding. In: NeurIPS (2021)

    Google Scholar 

  25. Li, R., et al.: Referring image segmentation via recurrent refinement networks. In: CVPR, pp. 5745–5753 (2018)

    Google Scholar 

  26. Li, X., et al.: Oscar: object-semantics aligned pre-training for vision-language tasks. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12375, pp. 121–137. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58577-8_8

    Chapter  Google Scholar 

  27. Liu, C., Lin, Z., Shen, X., Yang, J., Lu, X., Yuille, A.: Recurrent multimodal interaction for referring image segmentation. In: ICCV, pp. 1271–1280 (2017)

    Google Scholar 

  28. Liu, F., et al.: Referring image segmentation using text supervision. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 22124–22134 (2023)

    Google Scholar 

  29. Liu, J., et al.: Polyformer: referring image segmentation as sequential polygon generation. In: CVPR, pp. 18653–18663 (2023)

    Google Scholar 

  30. Liu, S., Qi, L., Qin, H., Shi, J., Jia, J.: Path aggregation network for instance segmentation. In: CVPR, pp. 8759–8768 (2018)

    Google Scholar 

  31. Liu, Y., et al.: RoBERTa: a robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692 (2019)

  32. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: ICCV, pp. 10012–10022 (2021)

    Google Scholar 

  33. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101 (2017)

  34. Lu, J., Batra, D., Parikh, D., Lee, S.: VilBERT: pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. In: NeurIPS (2019)

    Google Scholar 

  35. Lu, J., Goswami, V., Rohrbach, M., Parikh, D., Lee, S.: 12-in-1: multi-task vision and language representation learning. In: CVPR, pp. 10437–10446 (2020)

    Google Scholar 

  36. Mao, J., Huang, J., Toshev, A., Camburu, O., Yuille, A.L., Murphy, K.: Generation and comprehension of unambiguous object descriptions. In: CVPR, pp. 11–20 (2016)

    Google Scholar 

  37. Margffoy-Tuay, E., Pérez, J.C., Botero, E., Arbeláez, P.: Dynamic multimodal instance segmentation guided by natural language queries. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 656–672. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_39

    Chapter  Google Scholar 

  38. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 3DV, pp. 565–571. IEEE (2016)

    Google Scholar 

  39. Nagaraja, V.K., Morariu, V.I., Davis, L.S.: Modeling context between objects for referring expression understanding. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 792–807. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_48

    Chapter  Google Scholar 

  40. Qu, M., Wu, Y., Wei, Y., Liu, W., Liang, X., Zhao, Y.: Learning to segment every referring object point by point. In: CVPR, pp. 3021–3030 (2023)

    Google Scholar 

  41. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: ICML, pp. 8748–8763 (2021). https://proceedings.mlr.press/v139/radford21a.html

  42. Raghu, M., Unterthiner, T., Kornblith, S., Zhang, C., Dosovitskiy, A.: Do vision transformers see like convolutional neural networks? NeurIPS 34, 12116–12128 (2021)

    Google Scholar 

  43. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. NeurIPS 28 (2015)

    Google Scholar 

  44. Shi, H., Li, H., Meng, F., Wu, Q.: Key-word-aware network for referring expression image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 38–54. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_3

    Chapter  Google Scholar 

  45. Shtedritski, A., Rupprecht, C., Vedaldi, A.: What does clip know about a red circle? Visual prompt engineering for VLMS. arXiv preprint arXiv:2304.06712 (2023)

  46. Strudel, R., Laptev, I., Schmid, C.: Weakly-supervised segmentation of referring expressions. arXiv preprint arXiv:2205.04725 (2022)

  47. Wang, Z., et al.: CRIS: clip-driven referring image segmentation. In: CVPR, pp. 11686–11695 (2022)

    Google Scholar 

  48. Wu, J., Jiang, Y., Sun, P., Yuan, Z., Luo, P.: Language as queries for referring video object segmentation. In: CVPR, pp. 4974–4984 (2022)

    Google Scholar 

  49. Yang, S., Xia, M., Li, G., Zhou, H.Y., Yu, Y.: Bottom-up shift and reasoning for referring image segmentation. In: CVPR, pp. 11266–11275 (2021)

    Google Scholar 

  50. Yang, Z., Wang, J., Tang, Y., Chen, K., Zhao, H., Torr, P.H.: LAVT: language-aware vision transformer for referring image segmentation. In: CVPR, pp. 18155–18165 (2022)

    Google Scholar 

  51. Yang, Z., et al.: UniTAB: unifying text and box outputs for grounded vision-language modeling. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13696, pp. 521–539. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20059-5_30

    Chapter  Google Scholar 

  52. Ye, L., Rochan, M., Liu, Z., Wang, Y.: Cross-modal self-attention network for referring image segmentation. In: CVPR, pp. 10502–10511 (2019)

    Google Scholar 

  53. Yu, L., Poirson, P., Yang, S., Berg, A.C., Berg, T.L.: Modeling context in referring expressions. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 69–85. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_5

    Chapter  Google Scholar 

  54. Zhang, H., et al.: Glipv2: unifying localization and vision-language understanding. NeurIPS 35, 36067–36080 (2022)

    Google Scholar 

  55. Zhang, P., et al.: VinVL: revisiting visual representations in vision-language models. In: CVPR, pp. 5579–5588 (2021)

    Google Scholar 

  56. Zhu, C., et al.: SeqTR: a simple yet universal network for visual grounding. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13695, pp. 598–615. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19833-5_35

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayan Nag .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 69147 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nag, S., Goswami, K., Karanam, S. (2025). SafaRi: Adaptive Sequence Transformer for Weakly Supervised Referring Expression Segmentation. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15102. Springer, Cham. https://doi.org/10.1007/978-3-031-72784-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72784-9_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72783-2

  • Online ISBN: 978-3-031-72784-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics