How to Segment in 3D Using 2D Models: Automated 3D Segmentation of Prostate Cancer Metastatic Lesions on PET Volumes Using Multi-angle Maximum Intensity Projections and Diffusion Models | SpringerLink
Skip to main content

How to Segment in 3D Using 2D Models: Automated 3D Segmentation of Prostate Cancer Metastatic Lesions on PET Volumes Using Multi-angle Maximum Intensity Projections and Diffusion Models

  • Conference paper
  • First Online:
Deep Generative Models (DGM4MICCAI 2024)

Abstract

Prostate specific membrane antigen (PSMA) positron emission tomography/computed tomography (PET/CT) imaging provides a tremendously exciting frontier in visualization of prostate cancer (PCa) metastatic lesions. However, accurate segmentation of metastatic lesions is challenging due to low signal-to-noise ratios and variable sizes, shapes, and locations of the lesions. This study proposes a novel approach for automated segmentation of metastatic lesions in PSMA PET/CT 3D volumetric images using 2D denoising diffusion probabilistic models (DDPMs). Instead of 2D trans-axial slices or 3D volumes, the proposed approach segments the lesions on generated multi-angle maximum intensity projections (MA-MIPs) of the PSMA PET images, then obtains the final 3D segmentation masks from 3D ordered subset expectation maximization (OSEM) reconstruction of 2D MA-MIPs segmentations. Our proposed method achieved superior performance compared to state-of-the-art 3D segmentation approaches in terms of accuracy and robustness in detecting and segmenting small metastatic PCa lesions. The proposed method has significant potential as a tool for quantitative analysis of metastatic burden in PCa patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6634
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 8293
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bubendorf, L., Schöpfer, A., Wagner, U., Sauter, G., Moch, H., Willi, N., Gasser, T.C., Mihatsch, M.J.: Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Human pathology 31(5), 578–583 (2000)

    Article  Google Scholar 

  2. Duffy, M.J.: Biomarkers for prostate cancer: prostate-specific antigen and beyond. Clinical Chemistry and Laboratory Medicine (CCLM) 58(3), 326–339 (2020)

    Article  Google Scholar 

  3. Dzikunu, O., Ahamed, S., Toosi, A., Harsini, S., Benard, F., Rahmim, A., Uribe, C.: A 3d unet for automated metastatic lesions detection and segmentation from psma-pet images of patients with biochemical recurrence prostate cancer (2024)

    Google Scholar 

  4. Fendler, W.P., Eiber, M., Beheshti, M., Bomanji, J., Ceci, F., Cho, S., Giesel, F., Haberkorn, U., Hope, T.A., Kopka, K., et al.: 68 ga-psma pet/ct: Joint eanm and snmmi procedure guideline for prostate cancer imaging: version 1.0. European journal of nuclear medicine and molecular imaging 44, 1014–1024 (2017)

    Google Scholar 

  5. Freedland, S.J., Presti Jr, J.C., Amling, C.L., Kane, C.J., Aronson, W.J., Dorey, F., Terris, M.K., Group, S.D.S., et al.: Time trends in biochemical recurrence after radical prostatectomy: results of the search database. Urology 61(4), 736–741 (2003)

    Google Scholar 

  6. Harsini, S., Wilson, D., Saprunoff, H., Allan, H., Gleave, M., Goldenberg, L., Chi, K.N., Kim-Sing, C., Tyldesley, S., Bénard, F.: Outcome of patients with biochemical recurrence of prostate cancer after psma pet/ct-directed radiotherapy or surgery without systemic therapy. Cancer Imaging 23(1),  27 (2023)

    Article  Google Scholar 

  7. Haupt, F., Dijkstra, L., Alberts, I., Sachpekidis, C., Fech, V., Boxler, S., Gross, T., Holland-Letz, T., Zacho, H.D., Haberkorn, U., et al.: 68 ga-psma-11 pet/ct in patients with recurrent prostate cancer-a modified protocol compared with the common protocol. European journal of nuclear medicine and molecular imaging 47, 624–631 (2020)

    Article  Google Scholar 

  8. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. Advances in neural information processing systems 33, 6840–6851 (2020)

    Google Scholar 

  9. Hudson, H.M., Larkin, R.S.: Accelerated image reconstruction using ordered subsets of projection data. IEEE transactions on medical imaging 13(4), 601–609 (1994)

    Article  Google Scholar 

  10. Jafari, E., Zarei, A., Dadgar, H., Keshavarz, A., Manafi-Farid, R., Rostami, H., Assadi, M.: A convolutional neural network–based system for fully automatic segmentation of whole-body [68ga] ga-psma pet images in prostate cancer. European Journal of Nuclear Medicine and Molecular Imaging pp. 1–12 (2023)

    Google Scholar 

  11. Kostyszyn, D., Fechter, T., Bartl, N., Grosu, A.L., Gratzke, C., Sigle, A., Mix, M., Ruf, J., Fassbender, T.F., Kiefer, S., et al.: Intraprostatic tumor segmentation on psma pet images in patients with primary prostate cancer with a convolutional neural network. Journal of Nuclear Medicine 62(6), 823–828 (2021)

    Article  Google Scholar 

  12. Ma, K., Harmon, S.A., Klyuzhin, I.S., Rahmim, A., Turkbey, B.: Clinical application of artificial intelligence in positron emission tomography: Imaging of prostate cancer. PET clinics 17(1), 137–143 (2022)

    Article  Google Scholar 

  13. Moon, T.K.: The expectation-maximization algorithm. IEEE Signal processing magazine 13(6), 47–60 (1996)

    Article  Google Scholar 

  14. Nichol, A.Q., Dhariwal, P.: Improved denoising diffusion probabilistic models. In: International Conference on Machine Learning. pp. 8162–8171. PMLR (2021)

    Google Scholar 

  15. Polson, L., Fedrigo, R., Li, C., Sabouri, M., Dzikunu, O., Ahamed, S., Rahmim, A., Uribe, C.: Pytomography: A python library for quantitative medical image reconstruction. arXiv preprint arXiv:2309.01977 (2023)

  16. Rousseau, E., Wilson, D., Lacroix-Poisson, F., Krauze, A., Chi, K., Gleave, M., McKenzie, M., Tyldesley, S., Goldenberg, S.L., Bénard, F.: A prospective study on 18f-dcfpyl psma pet/ct imaging in biochemical recurrence of prostate cancer. Journal of Nuclear Medicine 60(11), 1587–1593 (2019)

    Article  Google Scholar 

  17. Soldatov, A., von Klot, C.A., Walacides, D., Derlin, T., Bengel, F.M., Ross, T.L., Wester, H.J., Derlin, K., Kuczyk, M.A., Christiansen, H., et al.: Patterns of progression after 68ga-psma-ligand pet/ct-guided radiation therapy for recurrent prostate cancer. International Journal of Radiation Oncology* Biology* Physics 103(1), 95–104 (2019)

    Google Scholar 

  18. Toosi, A., Harsini, S., Ahamed, S., Yousefirizi, F., Bénard, F., Uribe, C., Rahmim, A.: State-of-the-art object detection algorithms for small lesion detection in psma pet: use of rotational maximum intensity projection (mip) images. In: Medical Imaging 2023: Image Processing. vol. 12464, pp. 771–778. SPIE (2023)

    Google Scholar 

  19. Toosi, A., Harsini, S., Benard, F., Uribe, C., Rahmim, A.: Advanced deep learning-based lesion detection on rotational 2d maximum intensity projection (mip) images coupled with reverse mapping to the 3d pet domain (2023)

    Google Scholar 

  20. Wolleb, J., Sandkühler, R., Bieder, F., Valmaggia, P., Cattin, P.C.: Diffusion models for implicit image segmentation ensembles. In: International Conference on Medical Imaging with Deep Learning. pp. 1336–1348. PMLR (2022)

    Google Scholar 

  21. Xu, Y., Klyuzhin, I., Harsini, S., Ortiz, A., Zhang, S., Bénard, F., Dodhia, R., Uribe, C.F., Rahmim, A., Ferres, J.L.: Automatic segmentation of prostate cancer metastases in psma pet/ct images using deep neural networks with weighted batch-wise dice loss. Computers in Biology and Medicine 158, 106882 (2023)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by CIHR Project Grant PJT-162216, as well as computational resources provided by Microsoft AI for Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirhosein Toosi .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Toosi, A., Harsini, S., Bénard, F., Uribe, C., Rahmim, A. (2025). How to Segment in 3D Using 2D Models: Automated 3D Segmentation of Prostate Cancer Metastatic Lesions on PET Volumes Using Multi-angle Maximum Intensity Projections and Diffusion Models. In: Mukhopadhyay, A., Oksuz, I., Engelhardt, S., Mehrof, D., Yuan, Y. (eds) Deep Generative Models. DGM4MICCAI 2024. Lecture Notes in Computer Science, vol 15224. Springer, Cham. https://doi.org/10.1007/978-3-031-72744-3_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72744-3_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72743-6

  • Online ISBN: 978-3-031-72744-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics