Abstract
Text-based person search, employing free-form text queries to identify individuals within a vast image collection, presents a unique challenge in aligning visual and textual representations, particularly at the human part level. Existing methods often struggle with part feature extraction and alignment due to the lack of direct part-level supervision and reliance on heuristic features. We propose a novel framework that leverages a part discovery module based on slot attention to autonomously identify and align distinctive parts across modalities, enhancing interpretability and retrieval accuracy without explicit part-level correspondence supervision. Additionally, text-based dynamic part attention adjusts the importance of each part, further improving retrieval outcomes. Our method is evaluated on three public benchmarks, significantly outperforming existing methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aggarwal, S., Radhakrishnan, V.B., Chakraborty, A.: Text-based person search via attribute-aided matching. In: Proceedings of the Winter Conference on Applications of Computer Vision (WACV) (2020)
Chen, Y., Zhang, G., Lu, Y., Wang, Z., Zheng, Y.: TIPCB: a simple but effective part-based convolutional baseline for text-based person search. Neurocomputing 494, 171–181 (2022)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: Annual Conference of the North American Chapter of the Association for Computational Linguistics (2019)
Ding, Z., Ding, C., Shao, Z., Tao, D.: Semantically self-aligned network for text-to-image part-aware person re-identification. arXiv preprint arXiv:2107.12666 (2021)
Gao, C., et al.: Contextual non-local alignment over full-scale representation for text-based person search. arXiv preprint arXiv:2101.03036 (2021)
Gray, D., Brennan, S., Tao, H.: Evaluating appearance models for recognition, reacquisition, and tracking. In: Proceedings of the IEEE International Workshop on Performance Evaluation for Tracking and Surveillance (PETS) (2007)
Jiang, D., Ye, M.: Cross-modal implicit relation reasoning and aligning for text-to-image person retrieval. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR) (2023)
Jing, Y., Si, C., Wang, J., Wang, W., Wang, L., Tan, T.: Pose-guided multi-granularity attention network for text-based person search. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI) (2020)
Lee, K.-H., Chen, X., Hua, G., Hu, H., He, X.: Stacked cross attention for image-text matching. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 212–228. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_13
Li, S., Cao, M., Zhang, M.: Learning semantic-aligned feature representation for text-based person search. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE (2022)
Li, S., Xiao, T., Li, H., Zhou, B., Yue, D., Wang, X.: Person search with natural language description. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
Li, W., Zhao, R., Wang, X.: Human reidentification with transferred metric learning. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part I. LNCS, vol. 7724, pp. 31–44. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37331-2_3
Li, W., Zhao, R., Xiao, T., Wang, X.: DeepReID: deep filter pairing neural network for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014)
Li, Y., He, J., Zhang, T., Liu, X., Zhang, Y., Wu, F.: Diverse part discovery: occluded person re-identification with part-aware transformer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2021)
Locatello, F., et al.: Object-centric learning with slot attention (2020)
Niu, K., Huang, Y., Ouyang, W., Wang, L.: Improving description-based person re-identification by multi-granularity image-text alignments. IEEE Trans. Image Process. 29, 5542–5556 (2020)
Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)
Radford, A., et al.: Learning transferable visual models from natural language supervision. In: Proceedings of the International Conference on Machine Learning (ICML) (2021)
Sarafianos, N., Xu, X., Kakadiaris, I.A.: Adversarial representation learning for text-to-image matching. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2019)
Shao, Z., Zhang, X., Fang, M., Lin, Z., Wang, J., Ding, C.: Learning granularity-unified representations for text-to-image person re-identification. In: Proceedings of the ACM Multimedia Conference (ACMMM) (2022)
Shu, X., et al.: See finer, see more: implicit modality alignment for text-based person retrieval. In: Karlinsky, L., Michaeli, T., Nishino, K. (eds.) ECCV 2022. LNCS, vol. 13805, pp. 624–641. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-25072-9_42
Suo, W., et al.: A simple and robust correlation filtering method for text-based person search. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13695, pp. 726–742. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19833-5_42
Wang, C., Luo, Z., Lin, Y., Li, S.: Text-based person search via multi-granularity embedding learning. In: Proceedings of the International Joint Conferences on Artificial Intelligence (IJCAI) (2021)
Wang, Z., Fang, Z., Wang, J., Yang, Y.: ViTAA: visual-textual attributes alignment in person search by natural language. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 402–420. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_24
Wang, Z., et al.: CAIBC: capturing all-round information beyond color for text-based person retrieval. In: Proceedings of the ACM Multimedia Conference (ACMMM) (2022)
Wei, L., Zhang, S., Gao, W., Tian, Q.: Person transfer GAN to bridge domain gap for person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Wu, Y., Yan, Z., Han, X., Li, G., Zou, C., Cui, S.: LapsCore: language-guided person search via color reasoning. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2021)
Xiao, T., Li, S., Wang, B., Lin, L., Wang, X.: End-to-end deep learning for person search. arXiv preprint arXiv:1604.01850 (2016)
Yan, S., Dong, N., Zhang, L., Tang, J.: Clip-driven fine-grained text-image person re-identification. IEEE Trans. Image Process. 32, 6032–6046 (2023)
Zhang, Y., Lu, H.: Deep cross-modal projection learning for image-text matching. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 707–723. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_42
Zheng, L., Shen, L., Tian, L., Wang, S., Wang, J., Tian, Q.: Scalable person re-identification: a benchmark. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2015)
Zhu, A., et al.: DSSL: deep surroundings-person separation learning for text-based person retrieval. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 209–217 (2021)
Acknowledgements
This work was supported by the IITP grants and the NRF grants funded by Ministry of Science and ICT, Korea (RS-2019-II191906; RS-2022-II220926; NRF-2018R1A5A1060031; NRF-2021R1A2C3012728)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Park, J., Kim, D., Jeong, B., Kwak, S. (2025). PLOT: Text-Based Person Search with Part Slot Attention for Corresponding Part Discovery. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15079. Springer, Cham. https://doi.org/10.1007/978-3-031-72664-4_27
Download citation
DOI: https://doi.org/10.1007/978-3-031-72664-4_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72663-7
Online ISBN: 978-3-031-72664-4
eBook Packages: Computer ScienceComputer Science (R0)