Abstract
How to explore useful features from images as prompts to guide the deep image restoration models is an effective way to solve image restoration. In contrast to mining spatial relations within images as prompt, which leads to characteristics of different frequencies being neglected and further remaining subtle or undetectable artifacts in the restored image, we develop a Frequency Prompting image restoration method, dubbed FPro, which can effectively provide prompt components from a frequency perspective to guild the restoration model address these differences. Specifically, we first decompose input features into separate frequency parts via dynamically learned filters, where we introduce a gating mechanism for suppressing the less informative elements within the kernels. To propagate useful frequency information as prompt, we then propose a dual prompt block, consisting of a low-frequency prompt modulator (LPM) and a high-frequency prompt modulator (HPM), to handle signals from different bands respectively. Each modulator contains a generation process to incorporate prompting components into the extracted frequency maps, and a modulation part that modifies the prompt feature with the guidance of the decoder features. Experimental results on several popular datasets have demonstrated the favorable performance of our pipeline against SOTA methods on 5 image restoration tasks, including deraining, deraindrop, demoiréing, deblurring, and dehazing. The source code is available at https://github.com/joshyZhou/FPro.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Brown, T.B., et al.: Language models are few-shot learners. In: NeurIPS (2020)
Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: Dehazenet: an end-to-end system for single image haze removal. TIP 25, 5187–5198 (2016)
Chantas, G., Galatsanos, N.P., Molina, R., Katsaggelos, A.K.: Variational bayesian image restoration with a product of spatially weighted total variation image priors. TIP 19, 351–362 (2009)
Chen, H., et al.: Pre-trained image processing transformer. In: CVPR (2021)
Chen, L., Chu, X., Zhang, X., Sun, J.: Simple baselines for image restoration. In: ECCV 2022, pp. 17–33. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-20071-7_2
Chen, L., Lu, X., Zhang, J., Chu, X., Chen, C.: Hinet: half instance normalization network for image restoration. In: CVPR Workshops (2021)
Chen, X., Li, H., Li, M., Pan, J.: Learning a sparse transformer network for effective image deraining. In: CVPR (2023)
Chen, Y., Dai, X., Liu, M., Chen, D., Yuan, L., Liu, Z.: Dynamic convolution: attention over convolution kernels. In: CVPR (2020)
Cho, S.J., Ji, S.W., Hong, J.P., Jung, S.W., Ko, S.J.: Rethinking coarse-to-fine approach in single image deblurring. In: ICCV (2021)
Deng, X., Dragotti, P.L.: Deep convolutional neural network for multi-modal image restoration and fusion. TPAMI 43, 3333–3348 (2021)
Dong, J., Pan, J., Yang, Z., Tang, J.: Multi-scale residual low-pass filter network for image deblurring. In: ICCV (2023)
Dong, Y., Liu, Y., Zhang, H., Chen, S., Qiao, Y.: Fd-gan: generative adversarial networks with fusion-discriminator for single image dehazing. In: AAAI (2020)
Dosovitskiy, A., et al.: An image is worth 16\(\times \)16 words: transformers for image recognition at scale. In: ICLR (2021)
d’Ascoli, S., Touvron, H., Leavitt, M.L., Morcos, A.S., Biroli, G., Sagun, L.: Convit: improving vision transformers with soft convolutional inductive biases. In: ICML (2021)
Eigen, D., Krishnan, D., Fergus, R.: Restoring an image taken through a window covered with dirt or rain. In: ICCV (2013)
Fu, X., Huang, J., Zeng, D., Huang, Y., Ding, X., Paisley, J.: Removing rain from single images via a deep detail network. In: CVPR (2017)
Gan, Y., et al.: Decorate the newcomers: visual domain prompt for continual test time adaptation. In: AAAI (2023)
Guo, Y., Xiao, X., Chang, Y., Deng, S., Yan, L.: From sky to the ground: a large-scale benchmark and simple baseline towards real rain removal. In: ICCV (2023)
He, B., Wang, C., Shi, B., Duan, L.: Mop moiré patterns using mopnet. In: ICCV (2019)
He, B., Wang, C., Shi, B., Duan, L.-Y.: Fhd\(\text{ e}^{2}\)net: full high definition demoireing network. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 713–729. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_43
He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. TPAMI 33, 2341–2353 (2010)
Hendrycks, D., Gimpel, K.: Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415 (2016)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)
Jia, M., et al.: Visual prompt tuning. In: ECCV 2022, pp. 709–727. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-19827-4_41
Jiang, L., Dai, B., Wu, W., Loy, C.C.: Focal frequency loss for image reconstruction and synthesis. In: CVPR (2021)
Khattak, M.U., Rasheed, H., Maaz, M., Khan, S., Khan, F.S.: Maple: multi-modal prompt learning. In: CVPR (2023)
Kong, L., Dong, J., Ge, J., Li, M., Pan, J.: Efficient frequency domain-based transformers for high-quality image deblurring. In: CVPR (2023)
Li, B., Peng, X., Wang, Z., Xu, J., Feng, D.: Aod-net: all-in-one dehazing network. In: ICCV (2017)
Li, B., et al.: Benchmarking single-image dehazing and beyond. TIP 28, 492–505 (2018)
Li, B., Liu, X., Hu, P., Wu, Z., Lv, J., Peng, X.: All-in-one image restoration for unknown corruption. In: CVPR (2022)
Li, Y., Tan, R.T., Guo, X., Lu, J., Brown, M.S.: Rain streak removal using layer priors. In: CVPR (2016)
Li, Z., Lei, Y., Ma, C., Zhang, J., Shan, H.: Prompt-in-prompt learning for universal image restoration. arXiv preprint arXiv:2312.05038 (2023)
Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: Swinir: image restoration using swin transformer. In: ICCV Workshops (2021)
Liu, D., Wen, B., Fan, Y., Loy, C.C., Huang, T.S.: Non-local recurrent network for image restoration. In: NeurIPS (2018)
Liu, J., Yan, M., Zeng, T.: Surface-aware blind image deblurring. TPAMI 43, 1041–1055 (2021)
Liu, L., et al.: Wavelet-based dual-branch network for image demoiréing. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12358, pp. 86–102. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58601-0_6
Liu, L., et al.: Tape: task-agnostic prior embedding for image restoration. In: ECCV 2022, pp. 447–464. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-19797-0_26
Liu, X., Suganuma, M., Sun, Z., Okatani, T.: Dual residual networks leveraging the potential of paired operations for image restoration. In: CVPR (2019)
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: ICCV (2021)
Ma, J., Cheng, T., Wang, G., Zhang, Q., Wang, X., Zhang, L.: Prores: exploring degradation-aware visual prompt for universal image restoration. arXiv preprint arXiv:2306.13653 (2023)
Mei, Y., Fan, Y., Zhou, Y.: Image super-resolution with non-local sparse attention. In: CVPR (2021)
Mittal, A., Soundararajan, R., Bovik, A.C.: Making a “completely blind" image quality analyzer. IEEE SPL 20, 209–212 (2012)
Nah, S., Hyun Kim, T., Mu Lee, K.: Deep multi-scale convolutional neural network for dynamic scene deblurring. In: CVPR (2017)
Narasimhan, S.G., Nayar, S.K.: Contrast restoration of weather degraded images. TPAMI 25, 713–724 (2003)
Niu, B., et al.: Single image super-resolution via a holistic attention network. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 191–207. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_12
Oppenheim, A.: Discrete-Time Signal Processing. Prentice-Hall, Upper Saddle River (1999)
Özdenizci, O., Legenstein, R.: Restoring vision in adverse weather conditions with patch-based denoising diffusion models. TPAMI 45, 10346–10357 (2023)
Pan, X., Zhan, X., Dai, B., Lin, D., Loy, C.C., Luo, P.: Exploiting deep generative prior for versatile image restoration and manipulation. TPAMI 44, 7474–7489 (2022)
Park, N., Kim, S.: How do vision transformers work? In: ICLR (2022)
Potlapalli, V., Zamir, S.W., Khan, S., Khan, F.S.: Promptir: prompting for all-in-one blind image restoration. In: NeurIPS (2023)
Purohit, K., Suin, M., Rajagopalan, A., Boddeti, V.N.: Spatially-adaptive image restoration using distortion-guided networks. In: ICCV (2021)
Qian, R., Tan, R.T., Yang, W., Su, J., Liu, J.: Attentive generative adversarial network for raindrop removal from a single image. In: CVPR (2018)
Qu, Y., Chen, Y., Huang, J., Xie, Y.: Enhanced pix2pix dehazing network. In: CVPR (2019)
Quan, Y., Deng, S., Chen, Y., Ji, H.: Deep learning for seeing through window with raindrops. In: ICCV (2019)
Rabiner, L.R., Gold, B.: Theory and Application of Digital Signal Processing. Prentice-Hall, Englewood Cliffs (1975)
Ren, D., Zuo, W., Hu, Q., Zhu, P., Meng, D.: Progressive image deraining networks: a better and simpler baseline. In: CVPR (2019)
Ren, W., et al.: Single image dehazing via multi-scale convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 154–169. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_10
Ren, W., et al.: Deblurring dynamic scenes via spatially varying recurrent neural networks. TPAMI 44, 3974–3987 (2022)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Song, X., et al.: Tusr-net: triple unfolding single image dehazing with self-regularization and dual feature to pixel attention. TIP 32, 1231–1244 (2023)
Sun, Y., Yu, Y., Wang, W.: Moiré photo restoration using multiresolution convolutional neural networks. TIP 27, 4160–4178 (2018)
Tu, Z., et al.: Maxim: multi-axis mlp for image processing. In: CVPR (2022)
Valanarasu, J.M.J., Yasarla, R., Patel, V.M.: Transweather: transformer-based restoration of images degraded by adverse weather conditions. In: CVPR (2022)
Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)
Voigtman, E., Winefordner, J.D.: Low-pass filters for signal averaging. Rev. Sci. Inst. 57, 957–966 (1986)
Wang, C., He, B., Wu, S., Wan, R., Shi, B., Duan, L.Y.: Coarse-to-fine disentangling demoiréing framework for recaptured screen images. TPAMI 45, 9439–9453 (2023)
Wang, C., Pan, J., Lin, W., Dong, J., Wu, X.M.: Selfpromer: self-prompt dehazing transformers with depth-consistency. arXiv preprint arXiv:2303.07033 (2023)
Wang, C., et al.: Promptrestorer: a prompting image restoration method with degradation perception. In: NeurIPS (2023)
Wang, H., Xie, Q., Zhao, Q., Meng, D.: A model-driven deep neural network for single image rain removal. In: CVPR (2020)
Wang, T., Yang, X., Xu, K., Chen, S., Zhang, Q., Lau, R.W.: Spatial attentive single-image deraining with a high quality real rain dataset. In: CVPR (2019)
Wang, W., et al.: Pyramid vision transformer: a versatile backbone for dense prediction without convolutions. In: ICCV (2021)
Wang, Z., Cun, X., Bao, J., Zhou, W., Liu, J., Li, H.: Uformer: a general u-shaped transformer for image restoration. In: CVPR (2022)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. TIP 13, 600–612 (2004)
Wu, R., Yang, T., Sun, L., Zhang, Z., Li, S., Zhang, L.: Seesr: towards semantics-aware real-world image super-resolution. arXiv preprint arXiv:2311.16518 (2023)
Xiao, J., Fu, X., Liu, A., Wu, F., Zha, Z.J.: Image de-raining transformer. TPAMI 45, 12978–12995 (2022)
Xiao, T., Singh, M., Mintun, E., Darrell, T., Dollar, P., Girshick, R.: Early convolutions help transformers see better. In: NeurIPS (2021)
Yang, W., Tan, R.T., Feng, J., Guo, Z., Yan, S., Liu, J.: Joint rain detection and removal from a single image with contextualized deep networks. TPAMI 42, 1377–1393 (2019)
Yu, F., et al.: Scaling up to excellence: practicing model scaling for photo-realistic image restoration in the wild. arXiv preprint arXiv:2401.13627 (2024)
Yu, K., Wang, X., Dong, C., Tang, X., Loy, C.C.: Path-restore: learning network path selection for image restoration. TPAMI 44, 7078–7092 (2022)
Yue, H., Mao, Y., Liang, L., Xu, H., Hou, C., Yang, J.: Recaptured screen image demoiréing. TCSVT (2021)
Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.H.: Restormer: efficient transformer for high-resolution image restoration. In: CVPR (2022)
Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.-H., Shao, L.: Learning enriched features for real image restoration and enhancement. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 492–511. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_30
Zamir, S.W., et al.: Multi-stage progressive image restoration. In: CVPR (2021)
Zhang, K., Li, Y., Zuo, W., Zhang, L., Van Gool, L., Timofte, R.: Plug-and-play image restoration with deep denoiser prior. TPAMI 44, 6360–6376 (2021)
Zhao, H., Gou, Y., Li, B., Peng, D., Lv, J., Peng, X.: Comprehensive and delicate: an efficient transformer for image restoration. In: CVPR (2023)
Zheng, B., Yuan, S., Slabaugh, G., Leonardis, A.: Image demoireing with learnable bandpass filters. In: CVPR (2020)
Zheng, C., Zhang, Y., Gu, J., Zhang, Y., Kong, L., Yuan, X.: Cross aggregation transformer for image restoration. In: NeurIPS (2022)
Zhou, S., Chen, D., Pan, J., Shi, J., Yang, J.: Adapt or perish: adaptive sparse transformer with attentive feature refinement for image restoration. In: CVPR (2024)
Zou, X., Xiao, F., Yu, Z., Li, Y., Lee, Y.J.: Delving deeper into anti-aliasing in convnets. IJCV 131, 67–81 (2023)
Acknowledgements
This work was supported by Natural Science Foundation of Tianjin, China (No. 20JCJQJC00020), the National Natural Science Foundation of China (Nos. U22B2049, 62302240), Fundamental Research Funds for the Central Universities, and Supercomputing Center of Nankai University (NKSC).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhou, S., Pan, J., Shi, J., Chen, D., Qu, L., Yang, J. (2025). Seeing the Unseen: A Frequency Prompt Guided Transformer for Image Restoration. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15074. Springer, Cham. https://doi.org/10.1007/978-3-031-72640-8_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-72640-8_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72639-2
Online ISBN: 978-3-031-72640-8
eBook Packages: Computer ScienceComputer Science (R0)