Revising Defeasible Theories via Instructions | SpringerLink
Skip to main content

Revising Defeasible Theories via Instructions

  • Conference paper
  • First Online:
Rules and Reasoning (RuleML+RR 2024)

Abstract

Progress in AI raises agent alignment problems. In this paper, we look at the problem of instructing an agent, i.e. informing it about a regularity in the world it did not previously know. We study an idealized case: agents reasoning with logical theories. The idealization helps to understand the space of possibilities of the problem, and illustrates potential pitfalls and solutions. We believe non-monotonic theories more plausibly approximate human practical and commonsense reasoning so our agents here also use non-monotonic inference. However, instructing a non-monotonic theory does not always result in better alignment. One main cause of this phenomenon is humans omitting the kind of information used by a non-monotonic inference system to resolve conflicts between its parts. We illustrate this with theories induced from a dataset consisting of situated objects. We argue that obtaining non-monotonic theories that respond better to instruction requires additional restrictions on the formalism and theory update procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6634
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 8293
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Named after the authors: Alchourròn, Gärdenfors and Makinson.

  2. 2.

    Cut and Cautious Monotony have been put forth by Gabbay [5] as desirable properties if a non-monotonic formal system is to be regarded a logic. This proposal has since entrenched itself.

  3. 3.

    Code for rerunning the experiments: https://github.com/mpomarlan/ruleml2024,

  4. 4.

    We can stop induction once the number of rules is the same as in HeRO theories; this does not change our results regarding backslides, convergence etc.

References

  1. Billington, D.: Defeasible logic is stable. J. Log. Comput. 3(4), 379–400 (1993)

    Article  MathSciNet  Google Scholar 

  2. Billington, D., Antoniou, G., Governatori, G., Maher, M.: Revising nonmonotonic theories: the case of defeasible logic. In: Burgard, W., Cremers, A.B., Cristaller, T. (eds.) KI 1999. LNCS (LNAI), vol. 1701, pp. 101–112. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48238-5_8

    Chapter  Google Scholar 

  3. Dung, H.T., Son, T.C.: On model reconciliation: how to reconcile when robot does not know human’s model? In: Lierler, Y., Morales, J.F., Dodaro, C., Dahl, V., Gebser, M., Tekle, T. (eds.) Proceedings 38th International Conference on Logic Programming, ICLP 2022 Technical Communications/Doctoral Consortium, Haifa, Israel, 31st July–6th August 2022. EPTCS, vol. 364, pp. 27–48 (2022). https://doi.org/10.4204/EPTCS.364.4, https://doi.org/10.4204/EPTCS.364.4

  4. Ford, M., Billington, D.: Strategies in human nonmonotonic reasoning. Comput. Intell. 16(3), 446–468 (2000)

    Article  Google Scholar 

  5. Gabbay, D.M.: Theoretical foundations for non-monotonic reasoning in expert systems. In: Apt, K.R. (ed.) Logics and Models of Concurrent Systems. NATO ASI Series, vol. 13, pp. 439–457. Springer, Heidelberg (1985). https://doi.org/10.1007/978-3-642-82453-1_15

    Chapter  Google Scholar 

  6. Gärdenfors, P.: The dynamics of belief systems: Foundations vs. coherence theories. Rev. Int. Philos. 44(172 (1)), 24–46 (1990)

    Google Scholar 

  7. Governatori, G., Maher, M.J., Olivieri, F., Rotolo, A., Scannnapieco, S.: Strategic argumentation under grounded semantics is NP-complete. In: Bulling, N. (ed.) EUMAS 2014. LNCS (LNAI), vol. 8953, pp. 379–387. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17130-2_26

    Chapter  Google Scholar 

  8. Governatori, G., Olivieri, F., Cristani, M., Scannapieco, S.: Revision of defeasible preferences. Int. J. Approximate Reasoning 104, 205–230 (2019). https://doi.org/10.1016/j.ijar.2018.10.020, https://www.sciencedirect.com/science/article/pii/S0888613X18301336

  9. Governatori, G., Olivieri, F., Rotolo, A., Cristani, M.: Inference to the stable explanations. In: Gottlob, G., Inclezan, D., Maratea, M. (eds.) Logic Programming and Nonmonotonic Reasoning LPNMR 2022. Lecture Notes in Computer Science, vol. 13416, pp. 245–258. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15707-3_19

    Chapter  Google Scholar 

  10. Governatori, G., Olivieri, F., Scannapieco, S., Rotolo, A., Cristani, M.: Strategic argumentation is np-complete. ArXiv abs/1312.4287 (2013). https://api.semanticscholar.org/CorpusID:2078686

  11. Governatori, G., Rotolo, A.: Changing legal systems: legal abrogations and annulments in Defeasible Logic. Log. J. IGPL 18(1), 157–194 (2009). https://doi.org/10.1093/jigpal/jzp075

    Article  MathSciNet  Google Scholar 

  12. Governatori, G., Rotolo, A., Olivieri, F., Scannapieco, S.: Legal contractions: a logical analysis. In: Proceedings of the International Conference on Artificial Intelligence and Law, pp. 63–72 (2013). https://doi.org/10.1145/2514601.2514609

  13. Governatori, G., Rotolo, A., Riveret, R., Villata, S.: Modelling dialogues for optimal legislation. In: ICAIL 2019 - 17th International Conference on Artificial Intelligence and Law, pp. 229–233. ACM Press, Montreal (2019). https://doi.org/10.1145/3322640.3326731, https://hal.science/hal-02381105

  14. Johnston, B., Governatori, G.: Induction of defeasible logic theories in the legal domain. In: Proceedings of the International Conference on Artificial Intelligence and Law (2003)

    Google Scholar 

  15. Lam, H.P.: On the Derivability of defeasible logic. Ph.D., School of Information Technology and Electrical Engineering, The University of Queensland (2012)

    Google Scholar 

  16. Liu, W., Bansal, D., Daruna, A.A., Chernova, S.: Learning instance-level n-ary semantic knowledge at scale for robots operating in everyday environments. In: Shell, D.A., Toussaint, M., Hsieh, M.A. (eds.) Robotics: Science and Systems (RSS), pp. 529–547 (2021)

    Google Scholar 

  17. Maher, M.J.: Propositional defeasible logic has linear complexity. Theory Pract. Logic Program. 1(6), 691–711 (2001). https://doi.org/10.1017/S1471068401001168

    Article  MathSciNet  Google Scholar 

  18. Maher, M.J., Tachmazidis, I., Antoniou, G., Wade, S., Cheng, L.: Rethinking defeasible reasoning: a scalable approach. Theory Pract. Logic Program. 20(4), 552–586 (2020). https://doi.org/10.1017/S1471068420000010

    Article  MathSciNet  Google Scholar 

  19. Maier, F., Nute, D.: Well-founded semantics for defeasible logic. Synthese 176(2), 243–274 (2010). https://doi.org/10.1007/s11229-009-9492-1

    Article  Google Scholar 

  20. Moguillansky, M.O., Wassermann, R., Falappa, M.A.: Inconsistent-tolerant base revision through argument theory change. Log. J. IGPL 20(1), 154–186 (2012)

    Article  MathSciNet  Google Scholar 

  21. Moubaiddin, A., Obeid, N.: Partial information basis for agent-based collaborative dialogue. Appl. Intell. 30(2), 142–167 (2009)

    Article  Google Scholar 

  22. Nute, D.: Defeasible reasoning: a philosophical analysis in prolog. Aspects Artif. Intell. 1, 251–288 (1988)

    Google Scholar 

  23. Schurz, G.: Non-monotonic reasoning from an evolution-theoretic perspective: ontic, logical and cognitive foundations. Synthese 146, 37–51 (2005)

    Article  MathSciNet  Google Scholar 

  24. Shoham, Y.: Nonmonotonic reasoning and causation. Cogn. Sci. 14(2), 213–252 (1990)

    Article  Google Scholar 

  25. Son, T.C., Nguyen, V., Vasileiou, S.L., Yeoh, W.: Model reconciliation in logic programs. In: Faber, W., Friedrich, G., Gebser, M., Morak, M. (eds.) JELIA 2021. LNCS (LNAI), vol. 12678, pp. 393–406. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75775-5_26, https://api.semanticscholar.org/CorpusID:234475630

  26. Sreedharan, S., Hernandez, A.O., Mishra, A.P., Kambhampati, S.: Model-free model reconciliation. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pp. 587–594. International Joint Conferences on Artificial Intelligence Organization (2019). https://doi.org/10.24963/ijcai.2019/83

  27. Vasileiou, S., Previti, A., Yeoh, W.G.S.: On exploiting hitting sets for model reconciliation. In: AAAI Conference on Artificial Intelligence (2020). https://api.semanticscholar.org/CorpusID:229297869

  28. Wolf, M.J., Miller, K.W., Grodzinsky, F.S.: Why we should have seen that coming: comments on microsoft’s tay “experiment,” and wider implications. ORBIT J. 1(2), 1–12 (2017). https://doi.org/10.29297/orbit.v1i2.49, https://www.sciencedirect.com/science/article/pii/S2515856220300493

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihai Pomarlan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pomarlan, M., Hedblom, M.M., Spillner, L., Porzel, R. (2024). Revising Defeasible Theories via Instructions. In: Kirrane, S., Šimkus, M., Soylu, A., Roman, D. (eds) Rules and Reasoning. RuleML+RR 2024. Lecture Notes in Computer Science, vol 15183. Springer, Cham. https://doi.org/10.1007/978-3-031-72407-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72407-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72406-0

  • Online ISBN: 978-3-031-72407-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics