SIX-Net: Spatial-Context Information miX-up for Electrode Landmark Detection | SpringerLink
Skip to main content

SIX-Net: Spatial-Context Information miX-up for Electrode Landmark Detection

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15001))

  • 2678 Accesses

Abstract

Catheter ablation is a prevalent procedure for treating atrial fibrillation, primarily utilizing catheters equipped with electrodes to gather electrophysiological signals. However, the localization of catheters in fluoroscopy images presents a challenge for clinicians due to the complexity of the intervention processes. In this paper, we propose SIX-Net, a novel algorithm intending to localize landmarks of electrodes in fluoroscopy images precisely, by mixing up spatial-context information from three aspects: First, we propose a new network architecture specially designed for global-local spatial feature aggregation; Then, we mix up spatial correlations between segmentation and landmark detection, by sequential connections between the two tasks with the help of the Segment Anything Model; Finally, a weighted loss function is carefully designed considering the relative spatial-arrangement information among electrodes in the same image. Experiment results on the test set and two clinical-challenging subsets reveal that our method outperforms several state-of-the-art landmark detection methods (\({\sim } 50\% \) improvement for RF and \( {\sim } 25\%\) improvement for CS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11210
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14013
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ambrosini, P., Ruijters, D., Niessen, W.J., Moelker, A., van Walsum, T.: Fully automatic and real-time catheter segmentation in X-ray fluoroscopy (2017)

    Google Scholar 

  2. Bodart, L.E., et al.: Technical and clinical study of X-ray-based surface echo probe tracking using an attached fiducial apparatus. Med. Phys. 48(5), 2528–2542 (2020)

    Article  Google Scholar 

  3. Chang, P.L., et al.: Robust catheter and guidewire tracking using b-spline tube model and pixel-wise posteriors. IEEE Robot. Autom. Lett. 1(1), 303–308 (2016)

    Article  Google Scholar 

  4. Chen, R., et al.: Semi-supervised anatomical landmark detection via shape-regulated self-training. Neurocomputing 471, 335–345 (2022)

    Article  Google Scholar 

  5. Demoustier, M., Zhang, Y., Narasimha Murthy, V., Ghesu, F.C., Comaniciu, D.: Contrack: contextual transformer for device tracking in X-ray. In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14228, pp. 679–688. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43996-4_65

    Chapter  Google Scholar 

  6. Huang, L., Liu, Y., Chen, L., Chen, E.Z., Chen, X., Sun, S.: Robust landmark-based stent tracking in X-ray fluoroscopy. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13682, pp. 201–216. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20047-2_12

    Chapter  Google Scholar 

  7. Jafari, M.H., et al.: U-land: uncertainty-driven video landmark detection. IEEE Trans. Med. Imaging 41(4), 793–804 (2022). https://doi.org/10.1109/TMI.2021.3123547

    Article  Google Scholar 

  8. Kirillov, A., et al.: Segment anything (2023)

    Google Scholar 

  9. Lian, C., et al.: Multi-task dynamic transformer network for concurrent bone segmentation and large-scale landmark localization with dental CBCT. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 807–816. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_78

    Chapter  Google Scholar 

  10. Ma, Y., et al.: Real-time X-ray fluoroscopy-based catheter detection and tracking for cardiac electrophysiology interventions. Med. Phys. (2013). https://doi.org/10.1118/1.4808114

    Article  Google Scholar 

  11. Mark, D.B., et al.: Effect of catheter ablation vs medical therapy on quality of life among patients with atrial fibrillation: the CABANA randomized clinical trial. JAMA 321(13), 1275–1285 (2019). https://doi.org/10.1001/jama.2019.0692

    Article  Google Scholar 

  12. McCouat, J., Voiculescu, I.: Contour-hugging heatmaps for landmark detection. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 20565–20573 (2022). https://doi.org/10.1109/CVPR52688.2022.01994

  13. Nguyen, A., et al.: End-to-end real-time catheter segmentation with optical flow-guided warping during endovascular intervention. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 9967–9973 (2020). https://doi.org/10.1109/ICRA40945.2020.9197307

  14. Parameswaran, R., Al-Kaisey, A.M., Kalman, J.M.: Catheter ablation for atrial fibrillation: current indications and evolving technologies. Nat. Rev. Cardiol. 18(3), 210–225 (2021)

    Article  Google Scholar 

  15. Payer, C., Štern, D., Bischof, H., Urschler, M.: Integrating spatial configuration into heatmap regression based CNNs for landmark localization. Med. Image Anal. 54, 207–219 (2019)

    Article  Google Scholar 

  16. Quan, Q., Yao, Q., Li, J., Zhou, S.K.: Which images to label for few-shot medical landmark detection? (2021)

    Google Scholar 

  17. Ramadani, A., Bui, M., Wendler, T., Schunkert, H., Ewert, P., Navab, N.: A survey of catheter tracking concepts and methodologies. Med. Image Anal. 82, 102584 (2022). https://doi.org/10.1016/j.media.2022.102584. https://www.sciencedirect.com/science/article/pii/S1361841522002225

  18. Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: Labelme: a database and web-based tool for image annotation. Int. J. Comput. Vision 77, 157–173 (2008)

    Article  Google Scholar 

  19. Staerk, L., Sherer, J.A., Ko, D., Benjamin, E.J., Helm, R.H.: Atrial fibrillation: epidemiology, pathophysiology, and clinical outcomes. Circ. Res. 120(9), 1501–1517 (2017)

    Article  Google Scholar 

  20. Torabinia, M., et al.: Deep learning-driven catheter tracking from bi-plane X-ray fluoroscopy of 3D printed heart phantoms. Mini-Invasive Surg. (2021). https://api.semanticscholar.org/CorpusID:237815143

  21. Ullah, I., Chikontwe, P., Park, S.H.: Real-time tracking of guidewire robot tips using deep convolutional neural networks on successive localized frames. IEEE Access 7, 159743–159753 (2019). https://doi.org/10.1109/ACCESS.2019.2950263

    Article  Google Scholar 

  22. Wang, P., Chen, P., Yuan, Y., Liu, D., Huang, Z., Hou, X., Cottrell, G.: Understanding convolution for semantic segmentation. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1451–1460. IEEE (2018)

    Google Scholar 

  23. Wang, X., Xu, Z., Yao, Q., Sun, Y., Zhou, S.K.: OFELIA: optical flow-based electrode localization. In: Submitted to Medical Imaging with Deep Learning (2024, under review). https://openreview.net/forum?id=8245ExLB4I

  24. Yang, H., Shan, C., Kolen, A.F., N. de With, P.H.: Automated catheter localization in volumetric ultrasound using 3D patch-wise U-net with focal loss. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 1346–1350 (2019). https://doi.org/10.1109/ICIP.2019.8803045

  25. Yao, Q., He, Z., Han, H., Zhou, S.K.: Miss the point: targeted adversarial attack on multiple landmark detection (2020)

    Google Scholar 

  26. Yao, Q., Quan, Q., Xiao, L., Zhou, S.K.: One-shot medical landmark detection (2021)

    Google Scholar 

  27. Zhu, H., Yao, Q., Xiao, L., Zhou, S.K.: You only learn once: universal anatomical landmark detection. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12905, pp. 85–95. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87240-3_9

    Chapter  Google Scholar 

  28. Zhu, H., Yao, Q., Xiao, L., Zhou, S.K.: Learning to localize cross-anatomy landmarks in X-ray images with a universal model. BME Front. 2022 (2022)

    Google Scholar 

Download references

Acknowledgments

This study was funded by Natural Science Foundation of China under Grant 62271465 and Open Fund Project of Guangdong Academy of Medical Sciences, China (No. YKYKF202206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kevin Zhou .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 199 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, X., Xu, Z., Zhu, H., Yao, Q., Sun, Y., Zhou, S.K. (2024). SIX-Net: Spatial-Context Information miX-up for Electrode Landmark Detection. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15001. Springer, Cham. https://doi.org/10.1007/978-3-031-72378-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72378-0_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72377-3

  • Online ISBN: 978-3-031-72378-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics