Classification of Dehiscence Defects in Titanium and Zirconium Dental Implants | SpringerLink
Skip to main content

Classification of Dehiscence Defects in Titanium and Zirconium Dental Implants

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2024 (ICANN 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15023))

Included in the following conference series:

  • 362 Accesses

Abstract

In oral health, the accurate diagnosis of conditions like periapical lesions and dehiscences, especially those associated with titanium and zirconia implants, presents significant challenges due to the complex nature of such dental pathologies, which often manifest with subtle and overlapping symptoms, making them difficult to distinguish in traditional imaging methods. Moreover, the intricate interaction between these conditions and the surrounding oral structures, compounded by the varied responses to different implant materials, further complicates the diagnostic process. This paper introduces innovative multilabel classification methods aimed at enhancing diagnostic precision. We employ an adapted EfficientNet-B0 model with a new loss function, achieving 97% of accuracy. We automatically select and segment the best DICOM file slice from the cone-beam computed tomographies. This autonomous approach contributes to creating a new dataset that will aid in the diagnosis made by healthcare professionals. This new dataset attained an average Structural Similarity Index Measure (SSIM) of 0.6 compared to images selected by expert radiologists. The paper also explores the model’s explainability and addresses the handling of files originating from Cone Beam Computed Tomography (CBCT).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8007
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10009
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://captum.ai/.

References

  1. Gaviria, L., Salcido, J.P., Guda, T., Ong, J.L.: Current trends in dental implants. J. Korean Assoc. Oral Maxillofac. Surg. 40(2), 50 (2014)

    Article  Google Scholar 

  2. Cionca, N., Hashim, D., Mombelli, A.: Zirconia dental implants: where are we now, and where are we heading? In: Periodontolology 2000, vol. 73, no. 1, pp. 241–258 (2017)

    Google Scholar 

  3. Calazans, M.A.A., et al.: Automatic classification system for periapical lesions in cone-beam computed tomography. Sensors 22(17) (2022)

    Google Scholar 

  4. Kurt Bayrakdar, S., et al.: A deep learning approach for dental implant planning in cone-beam computed tomography images. BMC Med. Imag. 21(1), 86 (2021)

    Google Scholar 

  5. Kirillov, A., et al.: Segment anything. arXiv preprint arXiv:2304.02643 (2023)

  6. Minnema, J., et al.: Segmentation of dental cone-beam CT scans affected by metal artifacts using a mixed-scale dense convolutional neural network. Med. Phys. 46(11), 5027–5035 (2019)

    Article  Google Scholar 

  7. Antunes, F.N.R.R.: Uso de CBCT (Tomografia Computorizada de Feixe Cónico) em endodontia. J. Istanb. Univ. Fac. Dent. 51 (2018)

    Google Scholar 

  8. US - Food and Drug Administration: Dental Cone-beam Computed Tomography (2020)

    Google Scholar 

  9. Medicine LibreTexts,: 1.4D: Body planes and sections (2023)

    Google Scholar 

  10. Kahn, C.E., Carrino, J.A., Flynn, M.J., Peck, D.J., Horii, S.C.: DICOM and radiology: past, present, and future. J. Am. Coll. Radiol. 4(9), 652–657 (2007)

    Article  Google Scholar 

  11. Grauer, D., Cevidanes, L.S.H., Proffit, W.R.: Working with DICOM craniofacial images. Am. J. Orthod. Dentofac. Orthop. 136(3), 460–470 (2009)

    Article  Google Scholar 

  12. Chiapasco, M., Zaniboni, M.: Clinical outcomes of GBR procedures to correct peri-implant dehiscences and fenestrations: a systematic review. Clin. Oral Implant Res. 20, 113–123 (2009)

    Article  Google Scholar 

  13. Kirillov, A., et al.: Segment anything. arXiv preprint arXiv:2304.02643 (2023)

  14. Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks (2019)

    Google Scholar 

  15. Hegazy, M.A.A., Cho, M.H., Cho, M.H., Lee, S.Y.: U-net based metal segmentation on projection domain for metal artifact reduction in dental CT. Biomed. Eng. Lett. 9(3), 375–385 (2019)

    Article  Google Scholar 

  16. Katsumata, A., et al.: Image artifact in dental cone-beam CT. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 101(5), 652–657 (2006)

    Article  Google Scholar 

  17. Nilsson, J., Akenine-Möller ,T.: Understanding SSIM. arXiv preprint arXiv:2006.13846 (2020)

  18. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. arXiv preprint arXiv:1703.01365 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Antônio Barros da Silva Netto , Willian Farias Carvalho Oliveira or Cleber Zanchettin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Netto, A.B.d.S., Oliveira, W.F.C., Zanchettin, C. (2024). Classification of Dehiscence Defects in Titanium and Zirconium Dental Implants. In: Wand, M., Malinovská, K., Schmidhuber, J., Tetko, I.V. (eds) Artificial Neural Networks and Machine Learning – ICANN 2024. ICANN 2024. Lecture Notes in Computer Science, vol 15023. Springer, Cham. https://doi.org/10.1007/978-3-031-72353-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72353-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72352-0

  • Online ISBN: 978-3-031-72353-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics