Fusion of Image Representations for Time Series Classification with Deep Learning | SpringerLink
Skip to main content

Fusion of Image Representations for Time Series Classification with Deep Learning

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2024 (ICANN 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15021))

Included in the following conference series:

  • 505 Accesses

Abstract

Electronics and sensors are a rich source of continuous data. These devices generate unbounded and ordered data sequences at a high-frequency rate (e.g., 100 Hz) called time series. Time series can represent the data of a patient’s heartbeats to the seismic waves caused by the movement of materials within the Earth. Discovering and extracting patterns from time series is essential for supervised machine learning applications such as identifying cardiac arrhythmia or earthquake prediction. However, in many cases, it is challenging to identify hidden sequential patterns when these data are represented in their primitive form in the time domain. In order to reveal hidden patterns, a typical approach is to change the data representation by transforms (e.g., from time to frequency domain). In this paper, we propose a two-dimensional representation named Fusion of Image Representations for Time Series (FIRTS) to represent time series as images that reveal hidden patterns, improving the accuracy of supervised classifiers. Transforming signals to images allows using accurate deep learning methods developed and optimized for image classification (e.g., object recognition) in problems that initially generate one-dimensional data. FIRTS is obtained from the simple and efficient fusion of weak representations for time series. In a comprehensive experimental evaluation with 100 datasets, five representations, and six Convolutional Neural Networks (CNN) architectures, we demonstrate that FIRTS statistically outperforms distance-based methods and CNN models using other representations or in time domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7550
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9437
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E.: The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Min. Knowl. Disc. 31, 606–660 (2017)

    Article  MathSciNet  Google Scholar 

  2. Bolós, V.J., Benítez, R.: The wavelet scalogram in the study of time series. In: Advances in Differential Equations and Applications, pp. 147–154 (2014)

    Google Scholar 

  3. Campana, B.J.L., Keogh, E.: A compression-based distance measure for texture. Stat. Anal. Data Min. ASA Data Sci. J. 3(6), 381–398 (2010)

    Article  MathSciNet  Google Scholar 

  4. Cochran, W.T., et al.: What is the fast fourier transform? Proc. IEEE 55(10), 1664–1674 (1967)

    Article  Google Scholar 

  5. Costa, H.V., Ribeiro, A.G.R., Souza, V.M.A.: Supporting website for FIRTS (June 2024), https://sites.google.com/view/firts-paper

  6. Dau, H.A., et al.: The UCR time series archive. IEEE/CAA J. Automatica Sinica 6(6), 1293–1305 (2019)

    Article  Google Scholar 

  7. Eckmann, J., Kamphorst, S.O., Ruelle, D.: Recurrence plots of dynamical systems. World Sci. Ser. Nonlinear Sci. Ser. A 16, 441–446 (1995)

    Google Scholar 

  8. Gu, J., et al.: Recent advances in convolutional neural networks. Pattern Recogn. 77, 354–377 (2018)

    Article  Google Scholar 

  9. Hatami, N., Gavet, Y., Debayle, J.: Classification of time-series images using deep convolutional neural networks. In: ICMV, pp. 242–249 (2018)

    Google Scholar 

  10. Keogh, E.J., Pazzani, M.J.: Scaling up dynamic time warping for datamining applications. In: SIGKDD, pp. 285–289 (2000)

    Google Scholar 

  11. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  12. Li, Y.: Research and application of deep learning in image recognition. In: ICPECA, pp. 994–999 (2022)

    Google Scholar 

  13. Liao, T.W.: Clustering of time series data-a survey. Pattern Recogn. 38(11), 1857–1874 (2005)

    Article  Google Scholar 

  14. Lima, F.T., Souza, V.M.A.: A large comparison of normalization methods on time series. Big Data Res. 34, 100407 (2023)

    Article  Google Scholar 

  15. Marwan, N.: A historical review of recurrence plots. Eur. Phys. J. Spec. Top. 164(1), 3–12 (2008)

    Article  Google Scholar 

  16. Nakano, K., Chakraborty, B.: Effect of data representation for time series classification-a comparative study and a new proposal. Mach. Learn. Knowl. Extr. 1(4), 1100–1120 (2019)

    Article  Google Scholar 

  17. Parmezan, A.R.S., Souza, V.M.A., Batista, G.: Evaluation of statistical and machine learning models for time series prediction: identifying the state-of-the-art and the best conditions for the use of each model. Inf. Sci. 484, 302–337 (2019)

    Article  Google Scholar 

  18. Sagi, O., Rokach, L.: Ensemble learning: a survey. Wiley Interdisc. Rev. Data Min. Knowl. Discovery 8(4), e1249 (2018)

    Article  Google Scholar 

  19. Salles, R.S., Ribeiro, P.F.: The use of deep learning and 2-D wavelet scalograms for power quality disturbances classification. Electr. Power Syst. Res. 214, 108834 (2023)

    Article  Google Scholar 

  20. Semenoglou, A., Spiliotis, E., Assimakopoulos, V.: Image-based time series forecasting: a deep convolutional neural network approach. Neural Netw. 157, 39–53 (2023)

    Article  Google Scholar 

  21. Silva, D.F., Souza, V.M.A., Batista, G.: Time series classification using compression distance of recurrence plots. In: ICDM, pp. 687–696 (2013)

    Google Scholar 

  22. Souza, V.M.A., Silva, D.F., Batista, G.: Extracting texture features for time series classification. In: ICPR, pp. 1425–1430 (2014)

    Google Scholar 

  23. Souza, V.M.A., Reis, D.M., Maletzke, A.G., Batista, G.: Challenges in benchmarking stream learning algorithms with real-world data. Data Min. Knowl. Disc. 34, 1805–1858 (2020)

    Article  MathSciNet  Google Scholar 

  24. Wang, Z., Oates, T.: Encoding time series as images for visual inspection and classification using tiled convolutional neural networks. In: AAAI, pp. 1–7 (2015)

    Google Scholar 

  25. Wang, Z., Oates, T.: Imaging time-series to improve classification and imputation. In: IJCAI, pp. 3939–3945 (2015)

    Google Scholar 

  26. Willett, D.S., George, J., Willett, N.S., Stelinski, L.L., Lapointe, S.L.: Machine learning for characterization of insect vector feeding. PLoS Comput. Biol. 12(11), e1005158 (2016)

    Article  Google Scholar 

  27. Xu, H., et al.: Human activity recognition based on gramian angular field and deep convolutional neural network. IEEE Access 8, 199393–199405 (2020)

    Article  Google Scholar 

  28. Zanella, R.H., Coelho, L.A.C., Souza, V.M.A.: Ts-dense: Time series data augmentation by subclass clustering. In: ICPR, pp. 1800–1806. IEEE (2022)

    Google Scholar 

  29. Zhang, Y., Hou, Y., OuYang, K., Zhou, S.: Multi-scale signed recurrence plot based time series classification using inception architectural networks. Pattern Recogn. 123, 108385 (2022)

    Article  Google Scholar 

  30. Zhao, B., Lu, H., Chen, S., Liu, J., Wu, D.: Convolutional neural networks for time series classification. J. Syst. Eng. Electron. 28(1), 162–169 (2017)

    Article  Google Scholar 

  31. Zhong, S., Souza, V.M.A., Baker, G.E., Mueen, A.: Online few-shot time series classification for aftershock detection. In: SIGKDD, ACM (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinicius M. A. Souza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Costa, H.V., Ribeiro, A.G.R., Souza, V.M.A. (2024). Fusion of Image Representations for Time Series Classification with Deep Learning. In: Wand, M., Malinovská, K., Schmidhuber, J., Tetko, I.V. (eds) Artificial Neural Networks and Machine Learning – ICANN 2024. ICANN 2024. Lecture Notes in Computer Science, vol 15021. Springer, Cham. https://doi.org/10.1007/978-3-031-72347-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72347-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72346-9

  • Online ISBN: 978-3-031-72347-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics