Slice-Consistent Lymph Nodes Detection Transformer in CT Scans via Cross-Slice Query Contrastive Learning | SpringerLink
Skip to main content

Slice-Consistent Lymph Nodes Detection Transformer in CT Scans via Cross-Slice Query Contrastive Learning

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2024 (MICCAI 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15005))

  • 1260 Accesses

Abstract

Lymph node (LN) assessment is an indispensable yet very challenging task in the daily clinical workload of radiology and oncology offering valuable insights for cancer staging and treatment planning. Finding scatteredly distributed, low-contrast clinically relevant LNs in 3D CT is difficult even for experienced physicians along with high inter-observer variations. Previous CNN-based lesion and LN detectors often take a 2.5D approach by using a 2D network architecture with multi-slice inputs, which utilizes the pretrained 2D model weights and shows better accuracy as compared to direct 3D detectors. However, slice-based 2.5D detectors fail to place explicit constraints on the inter-slice consistency, where a single 3D LN can be falsely predicted as two or more LN instances or multiple LNs are erroneously merged into one large LN. These will adversely affect the downstream LN metastasis diagnostic task as the 3D size information is one of the most important malignant indicators. In this work, we propose an effective and accurate 2.5D LN detection transformer that explicitly considers the inter-slice consistency within a LN. It first enhances a detection transformer by utilizing an efficient multi-scale 2.5D fusion scheme to leverage pre-trained 2D weights. Then, we introduce a novel cross-slice query contrastive learning module, which pulls the query embeddings of the same 3D LN instance closer and pushes the embeddings of adjacent similar anatomies (hard negatives) farther. Trained and tested on 3D CT scans of 670 patients (with 7252 labeled LN instances) of different body parts (neck, chest, and upper abdomen) and pathologies, our method significantly improves the performance of previous leading detection methods by at least 3% average recall at the same FP rates in both internal and external testing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 11210
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 14013
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barbu, A., Suehling, M., Xu, X., Liu, D., Zhou, S.K., Comaniciu, D.: Automatic detection and segmentation of lymph nodes from ct data. IEEE Transactions on Medical Imaging 31(2), 240–250 (2011)

    Article  Google Scholar 

  2. Baumgartner, M., Jäger, P.F., Isensee, F., Maier-Hein, K.H.: nndetection: a self-configuring method for medical object detection. In: Medical Image Computing and Computer Assisted Intervention–MICCAI. pp. 530–539. Springer (2021)

    Google Scholar 

  3. Bouget, D., Jørgensen, A., Kiss, G., Leira, H.O., Langø, T.: Semantic segmentation and detection of mediastinal lymph nodes and anatomical structures in ct data for lung cancer staging. International journal of computer assisted radiology and surgery 14, 977–986 (2019)

    Article  Google Scholar 

  4. Bouget, D., Pedersen, A., Vanel, J., Leira, H.O., Langø, T.: Mediastinal lymph nodes segmentation using 3d convolutional neural network ensembles and anatomical priors guiding. Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 11(1), 44–58 (2023)

    Google Scholar 

  5. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: European conference on computer vision. pp. 213–229. Springer (2020)

    Google Scholar 

  6. Chao, C.H., Zhu, Z., Guo, D., Yan, K., Ho, T.Y., Cai, J., Harrison, A.P., Ye, X., Xiao, J., Yuille, A., et al.: Lymph node gross tumor volume detection in oncology imaging via relationship learning using graph neural network. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 772–782. Springer (2020)

    Google Scholar 

  7. Detterbeck, F.C., Boffa, D.J., Kim, A.W., Tanoue, L.T.: The eighth edition lung cancer stage classification. Chest 151(1), 193–203 (2017)

    Google Scholar 

  8. El-Sherief, A.H., Lau, C.T., Wu, C.C., Drake, R.L., Abbott, G.F., Rice, T.W.: International association for the study of lung cancer (iaslc) lymph node map: radiologic review with ct illustration. Radiographics 34(6), 1680–1691 (2014)

    Article  Google Scholar 

  9. Feulner, J., Zhou, S.K., Hammon, M., Hornegger, J., Comaniciu, D.: Lymph node detection and segmentation in chest ct data using discriminative learning and a spatial prior. Medical image analysis 17(2), 254–270 (2013)

    Article  Google Scholar 

  10. Guo, D., Ge, J., Yan, K., Wang, P., Zhu, Z., Zheng, D., Hua, X.S., Lu, L., Ho, T.Y., Ye, X., et al.: Thoracic lymph node segmentation in ct imaging via lymph node station stratification and size encoding. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 55–65. Springer (2022)

    Google Scholar 

  11. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE international conference on computer vision. pp. 2961–2969 (2017)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 770–778 (2016)

    Google Scholar 

  13. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnu-net: a self-configuring method for deep learning-based biomedical image segmentation. Nature methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  14. Li, F., Zhang, H., Liu, S., Guo, J., Ni, L.M., Zhang, L.: Dn-detr: Accelerate detr training by introducing query denoising. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 13619–13627 (2022)

    Google Scholar 

  15. Li, F., Zhang, H., Xu, H., Liu, S., Zhang, L., Ni, L.M., Shum, H.Y.: Mask dino: Towards a unified transformer-based framework for object detection and segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 3041–3050 (2023)

    Google Scholar 

  16. Li, H., Chen, L., Han, H., Kevin Zhou, S.: Satr: Slice attention with transformer for universal lesion detection. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 163–174. Springer (2022)

    Google Scholar 

  17. Liu, S., Li, F., Zhang, H., Yang, X., Qi, X., Su, H., Zhu, J., Zhang, L.: Dab-detr: Dynamic anchor boxes are better queries for detr. arXiv preprint arXiv:2201.12329 (2022)

  18. Oda, H., Roth, H.R., Bhatia, K.K., Oda, M., Kitasaka, T., Iwano, S., Homma, H., Takabatake, H., Mori, M., Natori, H., et al.: Dense volumetric detection and segmentation of mediastinal lymph nodes in chest ct images. In: Medical Imaging 2018: Computer-Aided Diagnosis. vol. 10575, p. 1057502. SPIE (2018)

    Google Scholar 

  19. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 658–666 (2019)

    Google Scholar 

  20. Wang, S., Zhu, Y., Lee, S., Elton, D.C., Shen, T.C., Tang, Y., Peng, Y., Lu, Z., Summers, R.M.: Global-local attention network with multi-task uncertainty loss for abnormal lymph node detection in mr images. Medical Image Analysis 77, 102345 (2022)

    Article  Google Scholar 

  21. Yan, K., Cai, J., Zheng, Y., Harrison, A.P., Jin, D., Tang, Y., Tang, Y., Huang, L., Xiao, J., Lu, L.: Learning from multiple datasets with heterogeneous and partial labels for universal lesion detection in ct. IEEE Transactions on Medical Imaging 40(10), 2759–2770 (2021)

    Article  Google Scholar 

  22. Yan, K., Jin, D., Guo, D., Xu, M., Shen, N., Hua, X.S., Ye, X., Lu, L.: Anatomy-aware lymph node detection in chest ct using implicit station stratification. arXiv preprint arXiv:2307.15271 (2023)

  23. Yan, K., Tang, Y., Peng, Y., Sandfort, V., Bagheri, M., Lu, Z., Summers, R.M.: Mulan: multitask universal lesion analysis network for joint lesion detection, tagging, and segmentation. In: Medical Image Computing and Computer Assisted Intervention–MICCAI. pp. 194–202. Springer (2019)

    Google Scholar 

  24. Yang, J., He, Y., Kuang, K., Lin, Z., Pfister, H., Ni, B.: Asymmetric 3d context fusion for universal lesion detection. In: Medical Image Computing and Computer Assisted Intervention–MICCAI. pp. 571–580. Springer (2021)

    Google Scholar 

  25. Zhang, H., Li, F., Liu, S., Zhang, L., Su, H., Zhu, J., Ni, L.M., Shum, H.Y.: Dino: Detr with improved denoising anchor boxes for end-to-end object detection. arXiv preprint arXiv:2203.03605 (2022)

  26. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable detr: Deformable transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159 (2020)

  27. Zhu, Z., Jin, D., Yan, K., Ho, T.Y., Ye, X., Guo, D., Chao, C.H., Xiao, J., Yuille, A., Lu, L.: Lymph node gross tumor volume detection and segmentation via distance-based gating using 3d ct/pet imaging in radiotherapy. In: International Conference on Medical Image Computing and Computer-Assisted Intervention. pp. 753–762. Springer (2020)

    Google Scholar 

  28. Zhu, Z., Yan, K., Jin, D., Cai, J., Ho, T.Y., Harrison, A.P., Guo, D., Chao, C.H., Ye, X., Xiao, J., et al.: Detecting scatteredly-distributed, small, andcritically important objects in 3d oncologyimaging via decision stratification. arXiv preprint arXiv:2005.13705 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yirui Wang or Xiaowei Ding .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors declare no competing interests.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 360 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, Q. et al. (2024). Slice-Consistent Lymph Nodes Detection Transformer in CT Scans via Cross-Slice Query Contrastive Learning. In: Linguraru, M.G., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2024. MICCAI 2024. Lecture Notes in Computer Science, vol 15005. Springer, Cham. https://doi.org/10.1007/978-3-031-72086-4_58

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72086-4_58

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72085-7

  • Online ISBN: 978-3-031-72086-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics