Abstract
We present Bio-Stark, an extension of Stark for the simulation and analysis of biological systems. Specifically, to simulate the stochastic, dynamical, behaviour of these systems, Bio-Stark exploits the core simulation model of Stark, the evolution sequence model, and it extends it by refining the discrete step modelling into a time point modelling. We show how Bio-Stark allows us to verify robustness properties in systems biology, by capturing the effects of (unpredictable) perturbations on species in biochemical networks, as well as on the oscillatory behaviour of gene regulatory networks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
Code available at https://github.com/stark-tool/Bio-STARK/tree/Tony/examples/repressilator.
- 2.
Code available at https://github.com/stark-tool/Bio-STARK/tree/Tony/examples/Isocitrate.
References
Ballarini, P., Bentriou, M., Cournède, P.: A formal approach for tuning stochastic oscillators. In: Pang, J., Niehren, J. (eds.) CMSB 2023. LNCS, vol. 14137, pp. 1–17. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-42697-1_1
Barkai, N., Leibler, S.: Robustness in simple biochemical networks. Nature 387, 913–917 (1997). https://doi.org/10.1038/43199
Casal, J.J., Yanossky, M.J.: Regulation of gene expression by light. Int. J. Dev. Biol. 49, 501–511 (2005). https://doi.org/10.1387/ijdb.051973jc
Castiglioni, V., Lanotte, R., Loreti, M., Tini, S.: Evaluating the effectiveness of digital twins through statistical model checking with feedback and perturbations. In: Haxthausen, A.E., Serwe, W. (eds.) FMICS 2024. LNCS, vol. 14952, pp. 21–39. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-68150-9_2
Castiglioni, V., Loreti, M., Tini, S.: Measuring adaptability and reliability of large scale systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020, Part II. LNCS, vol. 12477, pp. 380–396. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61470-6_23
Castiglioni, V., Loreti, M., Tini, S.: How adaptive and reliable is your program? In: Peters, K., Willemse, T.A.C. (eds.) FORTE 2021. LNCS, vol. 12719, pp. 60–79. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78089-0_4
Castiglioni, V., Loreti, M., Tini, S.: RobTL: a temporal logic for the robustness of cyber-physical systems. CoRR abs/2212.11158 (2022). https://doi.org/10.48550/arXiv.2212.11158
Castiglioni, V., Loreti, M., Tini, S.: A framework to measure the robustness of programs in the unpredictable environment. Log. Methods Comput. Sci. 19(3) (2023). https://doi.org/10.46298/LMCS-19(3:2)2023
Castiglioni, V., Loreti, M., Tini, S.: STARK: a software tool for the analysis of robustness in the unknown environment. In: Jongmans, S.S., Lopes, A. (eds.) COORDINATION 2023. LNCS, vol. 13908, pp. 115–132. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-35361-1_6
Castiglioni, V., Loreti, M., Tini, S.: RobTL: robustness temporal logic for CPS. In: Proceedings of CONCUR 2024. LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2024, to appear)
Castiglioni, V., Loreti, M., Tini, S.: STARK: a tool for the analysis of CPSs robustness. Sci. Comput. Program. 236, 103134 (2024). https://doi.org/10.1016/j.scico.2024.103134
Dexter, J.P., Gunawardena, J.: Dimerization and bifunctionality confer robustness to the Isocitrate Dehydrogenase regulatory system in Escherichia coli. J. Biol. Chem. 288(8), 5770–5778 (2013). https://doi.org/10.1074/jbc.M112.339226
Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000). https://doi.org/10.1038/35002125
Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81(25), 2340–2361 (1977)
Herbach, U.: Harissa: stochastic simulation and inference of gene regulatory networks based on transcriptional bursting. In: Pang, J., Niehren, J. (eds.) CMSB 2023. LNCS, vol. 14137, pp. 97–105. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-42697-1_7
Herbach, U., Bonnaffoux, A., Espinasse, T., Gandrillon, O.: Inferring gene regulatory networks from single-cell data: a mechanistic approach. BMC Syst. Biol. 11, 335–338 (2017). https://doi.org/10.1186/s12918-017-0487-0
Jia, X., He, X., Huang, C., Li, J., Dong, Z., Liu, K.: Protein translation: biological processes and therapeutic strategies for human diseases. Signal Transduct. Target. Ther. 9(44), 2786–2791 (2024). https://doi.org/10.1038/s41392-024-01749-9
Kim, J., Enciso, G.: Absolutely robust controllers for chemical reaction networks. J. R. Soc. Interface 17, 20200031 (2020). https://doi.org/10.1098/rsif.2020.0031
Kitano, H.: Towards a theory of biological robustness. Mol. Syst. Biol. 3(1), 137 (2007). https://doi.org/10.1038/msb4100179
Lanotte, R., Manicardi, D., Tini, S.: Step-by-step robustness for biochemical networks. In: Proceedings of ICTCS 2023. CEUR Workshop Proceedings, vol. 3587, pp. 299–313. CEUR-WS.org (2023). https://ceur-ws.org/Vol-3587/2906.pdf
Nasti, L.: Verification of robustness property in chemical reaction networks. Ph.D. thesis, University of Pisa, Italy (2020). https://etd.adm.unipi.it/theses/available/etd-02172020-165444/
Nasti, L., Gori, R., Milazzo, P.: Formalizing a notion of concentration robustness for biochemical networks. In: Mazzara, M., Ober, I., Salaün, G. (eds.) STAF 2018. LNCS, vol. 11176, pp. 81–97. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04771-9_8
Pernice, S., et al.: Computational modeling of the immune response in multiple sclerosis using epimod framework. BMC Bioinform. 21-S(17), 550 (2020). https://doi.org/10.1186/S12859-020-03823-9
Petrillo, E., Herz, M., Barta, A., Kalyna, M., Kornblihtt, A.: Let there be light: regulation of gene expression in plants. RNA Biol. 11(10), 1215–1220 (2014). https://doi.org/10.4161/15476286.2014.972852
Raun, W.R., et al.: Unpredictable nature of environment on nitrogen supply and demand. Agron. J. 111(6), 2786–2791 (2019). https://doi.org/10.2134/agronj2019.04.0291
Rizk, A., Batt, G., Fages, F., Soliman, S.: A general computational method for robustness analysis with applications to synthetic gene networks. Bioinform. 25(12) (2009). https://doi.org/10.1093/bioinformatics/btp200
Rizk, A., Batt, G., Fages, F., Soliman, S.: Continuous valuations of temporal logic specifications with applications to parameter optimization and robustness measures. Theor. Comput. Sci. 412(26), 2827–2839 (2011). https://doi.org/10.1016/j.tcs.2010.05.008
Shinar, G., Feinberg, M.: Structural sources of robustness in biochemical reaction networks. Science 327(5971), 1389–1391 (2010). https://doi.org/10.1126/science.1183372
Shinar, G., Feinberg, M.: Design principles for robust biochemical reaction networks: what works, what cannot work, and what might almost work. Mathe. Biosci. 231(1), 39–48 (2011). https://doi.org/10.1016/j.mbs
Tunnacliffe, E., Chubb, J.R.: What is a transcriptional burst? Trends Genet. 36(4), 288–297 (2020). https://doi.org/10.1016/j.tig.2020.01.003
Uri, A.: An Introduction to Systems Biology: Design Principles of Biological Circuits. Chapman and Hall/CRC (2006)
Vaserstein, L.N.: Markovian processes on countable space product describing large systems of automata. Probl. Peredachi Inf. 5(3), 64–72 (1969)
Acknowledgements
This study received funding from the European Union - Next-GenerationEU - National Recovery and Resilience Plan (NRRP) - MISSION 4 COMPONENT 2, INVESTMENT N. 1.1, CALL PRIN 2022 D.D. 104 02-02-2022 - MEDICA Project, CUP N. J53D23007180006.
This publication is part of the project NODES which has received funding from the MUR - M4C2 1.5 of PNRR with grant agreement no. ECS00000036.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Castiglioni, V., Loreti, M., Tini, S. (2024). Bio-Stark: A Tool for the Time-Point Robustness Analysis of Biological Systems. In: Gori, R., Milazzo, P., Tribastone, M. (eds) Computational Methods in Systems Biology. CMSB 2024. Lecture Notes in Computer Science(), vol 14971. Springer, Cham. https://doi.org/10.1007/978-3-031-71671-3_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-71671-3_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-71670-6
Online ISBN: 978-3-031-71671-3
eBook Packages: Computer ScienceComputer Science (R0)