Developing a Circular and Resilient Information System: A Design Science Approach | SpringerLink
Skip to main content

Abstract

Nowadays, circularity and resiliency are crucial for manufacturing. There is a need for collaboration across the value chain, deployment of critical enablers, and connection of traceability to sustainability and business objectives to accelerate the shift towards circular and resilient production processes. This study reviews circular economy and resilient manufacturing by further analyzing the literature on circular and resilient information systems (IS). We identify key performance indicators for circularity and resiliency and utilize a design science research approach to design the circular and resilient information system (CRIS) conceptual architecture. We further propose leveraging cutting-edge technologies and tools to enable real-time decision-making, monitoring, and certification of materials and products, facilitating sustainable and resilient manufacturing practices. The deployment of CRIS as part of digital transformation efforts represents a strategic move to meet the growing demands for sustainability and resilience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 12583
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
JPY 15729
Price includes VAT (Japan)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Disclosure of Interests

The authors have no competing interests.

References

  1. Ghobakhloo, M.: The future of manufacturing industry: a strategic roadmap toward Industry 4.0. J. Manuf. Technol. Manag. 29, 910–936 (2018). https://doi.org/10.1108/JMTM-02-2018-0057

  2. Barros, M.V., Salvador, R., do Prado, G.F., de Francisco, A.C., Piekarski, C.M.: Circular economy as a driver to sustainable businesses. Clean. Environ. Syst. 2, 100006 (2021). https://doi.org/10.1016/j.cesys.2020.100006

  3. Brydges, T.: Closing the loop on take, make, waste: investigating circular economy practices in the Swedish fashion industry. J. Clean. Prod. 293, 126245 (2021). https://doi.org/10.1016/j.jclepro.2021.126245

    Article  Google Scholar 

  4. Stahel, W.R.: The circular economy. Nature 531, 435–438 (2016). https://doi.org/10.1038/531435a

    Article  Google Scholar 

  5. Lieder, M., Rashid, A.: Towards circular economy implementation: a comprehensive review in context of manufacturing industry. J. Clean. Prod. 115, 36–51 (2016). https://doi.org/10.1016/j.jclepro.2015.12.042

  6. Yoshida, A., Terazono, A., Aramaki, T., Hanaki, K.: Secondary materials transfer from Japan to China: destination analysis. J. Mater. Cycles Waste Manag. 7, 8–15 (2005). https://doi.org/10.1007/s10163-004-0120-3

    Article  Google Scholar 

  7. Hagelüken, C.: Secondary raw material sources for precious and special metals. In: Sinding-Larsen, R., Wellmer, F.W. (eds.) Non-Renewable Resource Issues. International Year of Planet Earth, pp. 195–212. Springer, Dordrecht (2012). https://doi.org/10.1007/978-90-481-8679-2_10

  8. Kashmanian, R.M.: Building greater transparency in supply chains to advance sustainability. Environ. Qual. Manag. 26, 73–104 (2017). https://doi.org/10.1002/tqem.21495

  9. Hool, A., et al.: How companies improve critical raw material circularity: 5 use cases. Miner. Econ. 35, 325–335 (2022). https://doi.org/10.1007/s13563-022-00315-5

  10. Acerbi, F., Sassanelli, C., Terzi, S., Taisch, M.: A systematic literature review on data and information required for circular manufacturing strategies adoption. Sustainability 13, 1–27 (2021). https://doi.org/10.3390/su13042047

    Article  Google Scholar 

  11. Acerbi, F., Sassanelli, C., Despeisse, M., Taisch, M.: Exploiting information systems for circular manufacturing transition: a guiding tool. In: Alfnes, E., Romsdal, A., Strandhagen, J.O., von Cieminski, G., Romero, D. (eds.) APMS 2023. IFIPAICT, vol. 692, pp. 129–143. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43688-8_10

  12. Zeiss, R., Ixmeier, A., Recker, J., Kranz, J.: Mobilising information systems scholarship for a circular economy: review, synthesis, and directions for future research. Inf. Syst. J. 31, 148–183 (2021). https://doi.org/10.1111/isj.12305

  13. Belhadi, A., Kamble, S., Jabbour, C.J.C., Gunasekaran, A., Ndubisi, N.O., Venkatesh, M.: Manufacturing and service supply chain resilience to the COVID-19 outbreak: lessons learned from the automobile and airline industries. Technol. Forecast. Soc. Change 163, 120447 (2021). https://doi.org/10.1016/j.techfore.2020.120447

    Article  Google Scholar 

  14. Alexopoulos, K., Anagiannis, I., Nikolakis, N., Chryssolouris, G.: A quantitative approach to resilience in manufacturing systems. Int. J. Prod. Res. 60, 7178–7193 (2022). https://doi.org/10.1080/00207543.2021.2018519

    Article  Google Scholar 

  15. Kusiak, A.: Fundamentals of smart manufacturing: a multi-thread perspective. Annu. Rev. Control 47, 214–220 (2019). https://doi.org/10.1016/j.arcontrol.2019.02.001

    Article  Google Scholar 

  16. Plooto Project: Plooto-Project – This is the official website of the Plooto project. https://www.plooto-project.eu/

  17. Calisto Friant, M., Vermeulen, W.J.V., Salomone, R.: Analysing European Union circular economy policies: words versus actions. Sustain. Prod. Consum. 27, 337–353 (2021). https://doi.org/10.1016/j.spc.2020.11.001

  18. Kumar Mangla, S., Börühan, G., Ersoy, P., Kazancoglu, Y., Song, M.: Impact of information hiding on circular food supply chains in business-to-business context. J. Bus. Res. 135, 1–18 (2021). https://doi.org/10.1016/j.jbusres.2021.06.013

    Article  Google Scholar 

  19. Gusmerotti, N.M., Testa, F., Corsini, F., Pretner, G., Iraldo, F.: Drivers and approaches to the circular economy in manufacturing firms. J. Clean. Prod. 230, 314–327 (2019). https://doi.org/10.1016/j.jclepro.2019.05.044

    Article  Google Scholar 

  20. Wynn, M., Jones, P.: Digital technology deployment and the circular economy (2022)

    Google Scholar 

  21. Zeiß, R.: Contribution of information systems to the circular economy in the digital age. In: Marx Gómez, J., Solsbach, A., Klenke, T., Wohlgemuth, V. (eds.) Smart Cities/Smart Regions – Technische, wirtschaftliche und gesellschaftliche Innovationen, pp. 765–778. Springer, Wiesbaden (2019). https://doi.org/10.1007/978-3-658-25210-6_59

  22. Jäger-Roschko, M., Petersen, M.: Advancing the circular economy through information sharing: a systematic literature review. J. Clean. Prod. 369, 133210 (2022). https://doi.org/10.1016/j.jclepro.2022.133210

  23. Valls-Val, K., Ibáñez-Forés, V., Bovea, M.D.: How can organisations measure their level of circularity? A review of available tools. J. Clean. Prod. 354, 131679 (2022). https://doi.org/10.1016/j.jclepro.2022.131679

  24. Yu, Y., Yazan, D.M., van den Berg, M., Firdausy, D.R., Junjan, V., Iacob, M.-E.: Circularity information platform for the built environment. Autom. Constr. 152, 104933 (2023). https://doi.org/10.1016/j.autcon.2023.104933

  25. Denu, M., David, P., Landry, A., Mangione, F.: Exploring opportunities and barriers of digital technologies in circular manufacturing systems: an overview and a research roadmap. Sustain. Prod. Consum. 43, 400–421 (2023). https://doi.org/10.1016/j.spc.2023.11.015

  26. Bauer, D., Böhm, M., Bauernhansl, T., Sauer, A.: Increased resilience for manufacturing systems in supply networks through data-based turbulence mitigation. Prod. Eng. 15, 385–395 (2021). https://doi.org/10.1007/s11740-021-01036-4

    Article  Google Scholar 

  27. Fowler, D.S., Epiphaniou, G., Higgins, M.D., Maple, C.: Aspects of resilience for smart manufacturing systems. Strategic Change 32, 183–193 (2023). https://doi.org/10.1002/jsc.2555

  28. Ihlenfeldt, S., et al.: Increasing resilience of production systems by integrated design (2021)

    Google Scholar 

  29. Sheth, A., Kusiak, A.: Resiliency of smart manufacturing enterprises via information integration. J. Ind. Inf. Integr. 28, 100370 (2022). https://doi.org/10.1016/j.jii.2022.100370

    Article  Google Scholar 

  30. Andersson, J., Grassi, V., Mirandola, R., Perez-Palacin, D.: A conceptual framework for resilience: fundamental definitions, strategies and metrics. Computing 103, 559–588 (2021). https://doi.org/10.1007/s00607-020-00874-x

    Article  MathSciNet  Google Scholar 

  31. Fakoya, M.B., van der Poll, H.M.: Integrating ERP and MFCA systems for improved waste-reduction decisions in a brewery in South Africa. J. Clean. Prod. 40, 136–140 (2013). https://doi.org/10.1016/j.jclepro.2012.09.013

  32. Kerdlap, P., Low, J.S.C., Ramakrishna, S.: Zero waste manufacturing: a framework and review of technology, research, and implementation barriers for enabling a circular economy transition in Singapore. Resour. Conserv. Recycl. 151, 104438 (2019). https://doi.org/10.1016/j.resconrec.2019.104438

  33. Kamble, S.S., Belhadi, A., Gunasekaran, A., Ganapathy, L., Verma, S.: A large multi-group decision-making technique for prioritizing the big data-driven circular economy practices in the automobile component manufacturing industry. Technol. Forecast. Soc. Change 165, 120567 (2021). https://doi.org/10.1016/j.techfore.2020.120567

    Article  Google Scholar 

  34. Dubey, R., Gunasekaran, A., Childe, S.J., Fosso Wamba, S., Roubaud, D., Foropon, C.: Empirical investigation of data analytics capability and organizational flexibility as complements to supply chain resilience. Int. J. Prod. Res. 59, 110–128 (2021). https://doi.org/10.1080/00207543.2019.1582820

    Article  Google Scholar 

  35. Blay, K.B., Yeomans, S., Demian, P., Murguia, D.: The information resilience framework: vulnerabilities, capabilities, and requirements. J. Data Inf. Qual. 12, (2020). https://doi.org/10.1145/3388786

  36. Caiazzo, B., Murino, T., Petrillo, A., Piccirillo, G., Santini, S.: An IoT-based and cloud-assisted AI-driven monitoring platform for smart manufacturing: design architecture and experimental validation. J. Manuf. Technol. Manag. 34, 507–534 (2023). https://doi.org/10.1108/JMTM-02-2022-0092

    Article  Google Scholar 

  37. Zhang, X., Ming, X.: An implementation for smart manufacturing information system (SMIS) from an industrial practice survey. Comput. Ind. Eng. 151, 106938 (2021). https://doi.org/10.1016/j.cie.2020.106938

  38. Jamwal, A., Agrawal, R., Sharma, M.: Industry 4.0 technologies for manufacturing sustainability: a systematic review and future research directions. Appl. Sci. (2021)

    Google Scholar 

  39. Dornfeld, D.A.: Moving towards green and sustainable manufacturing. Int. J. Precis. Eng. Manuf. Green Technol. 1, 63–66 (2014). https://doi.org/10.1007/s40684-014-0010-7

    Article  Google Scholar 

  40. Kenett, R.S., Zonnenshain, A., Fortuna, G.: A road map for applied data sciences supporting sustainability in advanced manufacturing: the information quality dimensions. Procedia Manuf. 21, 141–148 (2018). https://doi.org/10.1016/j.promfg.2018.02.104

  41. Gregor, S., Hevner, A.R.: Positioning and presenting design science research for maximum impact. MIS Q., 337–355 (2013)

    Google Scholar 

  42. Peffers, K., Tuunanen, T., Niehaves, B.: Design science research genres: introduction to the special issue on exemplars and criteria for applicable design science research (2018)

    Google Scholar 

  43. Venable, J.R., Pries-Heje, J., Baskerville, R.L.: Choosing a design science research methodology (2017)

    Google Scholar 

  44. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science research methodology for information systems research. J. Manag. Inf. Syst. 24, 45–77 (2007)

    Article  Google Scholar 

  45. Hosseini Shirvani, M., Akbarifar, A., Salar Nazokkar, A.: Reliability non-functional requirement evaluation in mission-critical systems with an architectural strategy for future systems. Int. J. Comput. Appl. 46, 227–251 (2024). https://doi.org/10.1080/1206212X.2024.2304385

    Article  Google Scholar 

  46. Eirinakis, P., et al.: Enhancing cognition for digital twins. In: Proceedings - 2020 IEEE International Conference on Engineering, Technology and Innovation, ICE/ITMC 2020 (2020). https://doi.org/10.1109/ICE/ITMC49519.2020.9198492

  47. Plattform Industrie 4.0: Developers can start right away: Plattform Industrie 4.0 publishes specification on the Asset Administration Shell V2.0 including OPC UA, AutomationML and RDF mappings. https://www.plattform-i40.de/IP/Redaktion/EN/PressReleases/2019/2019-11-25-VWS_SPS.html

  48. Faruque, M.A. Al, Muthirayan, D., Yu, S.-Y., Khargonekar, P.P.: Cognitive digital twin for manufacturing systems. In: 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 440–445 (2021)

    Google Scholar 

  49. Yanıkoğlu, İ., Gorissen, B.L., den Hertog, D.: A survey of adjustable robust optimization. Eur. J. Oper. Res. 277, 799–813 (2019). https://doi.org/10.1016/j.ejor.2018.08.031

  50. Doukidis, G., Spinellis, D., Ebert, C.: Digital transformation - a primer for practitioners. IEEE Softw. 37, 13–21 (2020). https://doi.org/10.1109/MS.2020.2999969

    Article  Google Scholar 

  51. Gong, C., Ribiere, V.: Developing a unified definition of digital transformation. Technovation 102, 102217 (2021). https://doi.org/10.1016/j.technovation.2020.102217

Download references

Acknowledgement

This research has been supported by the Plooto Project in the European Union’s Horizon 2020 programme (GA no. 101092008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timoleon Farmakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Farmakis, T., Koukopoulos, A., Zois, G., Mourtos, I., Lounis, S., Kalaboukas, K. (2024). Developing a Circular and Resilient Information System: A Design Science Approach. In: Thürer, M., Riedel, R., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Production Management Systems for Volatile, Uncertain, Complex, and Ambiguous Environments. APMS 2024. IFIP Advances in Information and Communication Technology, vol 728. Springer, Cham. https://doi.org/10.1007/978-3-031-71622-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71622-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71621-8

  • Online ISBN: 978-3-031-71622-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics