Abstract
Nowadays, circularity and resiliency are crucial for manufacturing. There is a need for collaboration across the value chain, deployment of critical enablers, and connection of traceability to sustainability and business objectives to accelerate the shift towards circular and resilient production processes. This study reviews circular economy and resilient manufacturing by further analyzing the literature on circular and resilient information systems (IS). We identify key performance indicators for circularity and resiliency and utilize a design science research approach to design the circular and resilient information system (CRIS) conceptual architecture. We further propose leveraging cutting-edge technologies and tools to enable real-time decision-making, monitoring, and certification of materials and products, facilitating sustainable and resilient manufacturing practices. The deployment of CRIS as part of digital transformation efforts represents a strategic move to meet the growing demands for sustainability and resilience.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Disclosure of Interests
The authors have no competing interests.
References
Ghobakhloo, M.: The future of manufacturing industry: a strategic roadmap toward Industry 4.0. J. Manuf. Technol. Manag. 29, 910–936 (2018). https://doi.org/10.1108/JMTM-02-2018-0057
Barros, M.V., Salvador, R., do Prado, G.F., de Francisco, A.C., Piekarski, C.M.: Circular economy as a driver to sustainable businesses. Clean. Environ. Syst. 2, 100006 (2021). https://doi.org/10.1016/j.cesys.2020.100006
Brydges, T.: Closing the loop on take, make, waste: investigating circular economy practices in the Swedish fashion industry. J. Clean. Prod. 293, 126245 (2021). https://doi.org/10.1016/j.jclepro.2021.126245
Stahel, W.R.: The circular economy. Nature 531, 435–438 (2016). https://doi.org/10.1038/531435a
Lieder, M., Rashid, A.: Towards circular economy implementation: a comprehensive review in context of manufacturing industry. J. Clean. Prod. 115, 36–51 (2016). https://doi.org/10.1016/j.jclepro.2015.12.042
Yoshida, A., Terazono, A., Aramaki, T., Hanaki, K.: Secondary materials transfer from Japan to China: destination analysis. J. Mater. Cycles Waste Manag. 7, 8–15 (2005). https://doi.org/10.1007/s10163-004-0120-3
Hagelüken, C.: Secondary raw material sources for precious and special metals. In: Sinding-Larsen, R., Wellmer, F.W. (eds.) Non-Renewable Resource Issues. International Year of Planet Earth, pp. 195–212. Springer, Dordrecht (2012). https://doi.org/10.1007/978-90-481-8679-2_10
Kashmanian, R.M.: Building greater transparency in supply chains to advance sustainability. Environ. Qual. Manag. 26, 73–104 (2017). https://doi.org/10.1002/tqem.21495
Hool, A., et al.: How companies improve critical raw material circularity: 5 use cases. Miner. Econ. 35, 325–335 (2022). https://doi.org/10.1007/s13563-022-00315-5
Acerbi, F., Sassanelli, C., Terzi, S., Taisch, M.: A systematic literature review on data and information required for circular manufacturing strategies adoption. Sustainability 13, 1–27 (2021). https://doi.org/10.3390/su13042047
Acerbi, F., Sassanelli, C., Despeisse, M., Taisch, M.: Exploiting information systems for circular manufacturing transition: a guiding tool. In: Alfnes, E., Romsdal, A., Strandhagen, J.O., von Cieminski, G., Romero, D. (eds.) APMS 2023. IFIPAICT, vol. 692, pp. 129–143. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43688-8_10
Zeiss, R., Ixmeier, A., Recker, J., Kranz, J.: Mobilising information systems scholarship for a circular economy: review, synthesis, and directions for future research. Inf. Syst. J. 31, 148–183 (2021). https://doi.org/10.1111/isj.12305
Belhadi, A., Kamble, S., Jabbour, C.J.C., Gunasekaran, A., Ndubisi, N.O., Venkatesh, M.: Manufacturing and service supply chain resilience to the COVID-19 outbreak: lessons learned from the automobile and airline industries. Technol. Forecast. Soc. Change 163, 120447 (2021). https://doi.org/10.1016/j.techfore.2020.120447
Alexopoulos, K., Anagiannis, I., Nikolakis, N., Chryssolouris, G.: A quantitative approach to resilience in manufacturing systems. Int. J. Prod. Res. 60, 7178–7193 (2022). https://doi.org/10.1080/00207543.2021.2018519
Kusiak, A.: Fundamentals of smart manufacturing: a multi-thread perspective. Annu. Rev. Control 47, 214–220 (2019). https://doi.org/10.1016/j.arcontrol.2019.02.001
Plooto Project: Plooto-Project – This is the official website of the Plooto project. https://www.plooto-project.eu/
Calisto Friant, M., Vermeulen, W.J.V., Salomone, R.: Analysing European Union circular economy policies: words versus actions. Sustain. Prod. Consum. 27, 337–353 (2021). https://doi.org/10.1016/j.spc.2020.11.001
Kumar Mangla, S., Börühan, G., Ersoy, P., Kazancoglu, Y., Song, M.: Impact of information hiding on circular food supply chains in business-to-business context. J. Bus. Res. 135, 1–18 (2021). https://doi.org/10.1016/j.jbusres.2021.06.013
Gusmerotti, N.M., Testa, F., Corsini, F., Pretner, G., Iraldo, F.: Drivers and approaches to the circular economy in manufacturing firms. J. Clean. Prod. 230, 314–327 (2019). https://doi.org/10.1016/j.jclepro.2019.05.044
Wynn, M., Jones, P.: Digital technology deployment and the circular economy (2022)
Zeiß, R.: Contribution of information systems to the circular economy in the digital age. In: Marx Gómez, J., Solsbach, A., Klenke, T., Wohlgemuth, V. (eds.) Smart Cities/Smart Regions – Technische, wirtschaftliche und gesellschaftliche Innovationen, pp. 765–778. Springer, Wiesbaden (2019). https://doi.org/10.1007/978-3-658-25210-6_59
Jäger-Roschko, M., Petersen, M.: Advancing the circular economy through information sharing: a systematic literature review. J. Clean. Prod. 369, 133210 (2022). https://doi.org/10.1016/j.jclepro.2022.133210
Valls-Val, K., Ibáñez-Forés, V., Bovea, M.D.: How can organisations measure their level of circularity? A review of available tools. J. Clean. Prod. 354, 131679 (2022). https://doi.org/10.1016/j.jclepro.2022.131679
Yu, Y., Yazan, D.M., van den Berg, M., Firdausy, D.R., Junjan, V., Iacob, M.-E.: Circularity information platform for the built environment. Autom. Constr. 152, 104933 (2023). https://doi.org/10.1016/j.autcon.2023.104933
Denu, M., David, P., Landry, A., Mangione, F.: Exploring opportunities and barriers of digital technologies in circular manufacturing systems: an overview and a research roadmap. Sustain. Prod. Consum. 43, 400–421 (2023). https://doi.org/10.1016/j.spc.2023.11.015
Bauer, D., Böhm, M., Bauernhansl, T., Sauer, A.: Increased resilience for manufacturing systems in supply networks through data-based turbulence mitigation. Prod. Eng. 15, 385–395 (2021). https://doi.org/10.1007/s11740-021-01036-4
Fowler, D.S., Epiphaniou, G., Higgins, M.D., Maple, C.: Aspects of resilience for smart manufacturing systems. Strategic Change 32, 183–193 (2023). https://doi.org/10.1002/jsc.2555
Ihlenfeldt, S., et al.: Increasing resilience of production systems by integrated design (2021)
Sheth, A., Kusiak, A.: Resiliency of smart manufacturing enterprises via information integration. J. Ind. Inf. Integr. 28, 100370 (2022). https://doi.org/10.1016/j.jii.2022.100370
Andersson, J., Grassi, V., Mirandola, R., Perez-Palacin, D.: A conceptual framework for resilience: fundamental definitions, strategies and metrics. Computing 103, 559–588 (2021). https://doi.org/10.1007/s00607-020-00874-x
Fakoya, M.B., van der Poll, H.M.: Integrating ERP and MFCA systems for improved waste-reduction decisions in a brewery in South Africa. J. Clean. Prod. 40, 136–140 (2013). https://doi.org/10.1016/j.jclepro.2012.09.013
Kerdlap, P., Low, J.S.C., Ramakrishna, S.: Zero waste manufacturing: a framework and review of technology, research, and implementation barriers for enabling a circular economy transition in Singapore. Resour. Conserv. Recycl. 151, 104438 (2019). https://doi.org/10.1016/j.resconrec.2019.104438
Kamble, S.S., Belhadi, A., Gunasekaran, A., Ganapathy, L., Verma, S.: A large multi-group decision-making technique for prioritizing the big data-driven circular economy practices in the automobile component manufacturing industry. Technol. Forecast. Soc. Change 165, 120567 (2021). https://doi.org/10.1016/j.techfore.2020.120567
Dubey, R., Gunasekaran, A., Childe, S.J., Fosso Wamba, S., Roubaud, D., Foropon, C.: Empirical investigation of data analytics capability and organizational flexibility as complements to supply chain resilience. Int. J. Prod. Res. 59, 110–128 (2021). https://doi.org/10.1080/00207543.2019.1582820
Blay, K.B., Yeomans, S., Demian, P., Murguia, D.: The information resilience framework: vulnerabilities, capabilities, and requirements. J. Data Inf. Qual. 12, (2020). https://doi.org/10.1145/3388786
Caiazzo, B., Murino, T., Petrillo, A., Piccirillo, G., Santini, S.: An IoT-based and cloud-assisted AI-driven monitoring platform for smart manufacturing: design architecture and experimental validation. J. Manuf. Technol. Manag. 34, 507–534 (2023). https://doi.org/10.1108/JMTM-02-2022-0092
Zhang, X., Ming, X.: An implementation for smart manufacturing information system (SMIS) from an industrial practice survey. Comput. Ind. Eng. 151, 106938 (2021). https://doi.org/10.1016/j.cie.2020.106938
Jamwal, A., Agrawal, R., Sharma, M.: Industry 4.0 technologies for manufacturing sustainability: a systematic review and future research directions. Appl. Sci. (2021)
Dornfeld, D.A.: Moving towards green and sustainable manufacturing. Int. J. Precis. Eng. Manuf. Green Technol. 1, 63–66 (2014). https://doi.org/10.1007/s40684-014-0010-7
Kenett, R.S., Zonnenshain, A., Fortuna, G.: A road map for applied data sciences supporting sustainability in advanced manufacturing: the information quality dimensions. Procedia Manuf. 21, 141–148 (2018). https://doi.org/10.1016/j.promfg.2018.02.104
Gregor, S., Hevner, A.R.: Positioning and presenting design science research for maximum impact. MIS Q., 337–355 (2013)
Peffers, K., Tuunanen, T., Niehaves, B.: Design science research genres: introduction to the special issue on exemplars and criteria for applicable design science research (2018)
Venable, J.R., Pries-Heje, J., Baskerville, R.L.: Choosing a design science research methodology (2017)
Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science research methodology for information systems research. J. Manag. Inf. Syst. 24, 45–77 (2007)
Hosseini Shirvani, M., Akbarifar, A., Salar Nazokkar, A.: Reliability non-functional requirement evaluation in mission-critical systems with an architectural strategy for future systems. Int. J. Comput. Appl. 46, 227–251 (2024). https://doi.org/10.1080/1206212X.2024.2304385
Eirinakis, P., et al.: Enhancing cognition for digital twins. In: Proceedings - 2020 IEEE International Conference on Engineering, Technology and Innovation, ICE/ITMC 2020 (2020). https://doi.org/10.1109/ICE/ITMC49519.2020.9198492
Plattform Industrie 4.0: Developers can start right away: Plattform Industrie 4.0 publishes specification on the Asset Administration Shell V2.0 including OPC UA, AutomationML and RDF mappings. https://www.plattform-i40.de/IP/Redaktion/EN/PressReleases/2019/2019-11-25-VWS_SPS.html
Faruque, M.A. Al, Muthirayan, D., Yu, S.-Y., Khargonekar, P.P.: Cognitive digital twin for manufacturing systems. In: 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 440–445 (2021)
Yanıkoğlu, İ., Gorissen, B.L., den Hertog, D.: A survey of adjustable robust optimization. Eur. J. Oper. Res. 277, 799–813 (2019). https://doi.org/10.1016/j.ejor.2018.08.031
Doukidis, G., Spinellis, D., Ebert, C.: Digital transformation - a primer for practitioners. IEEE Softw. 37, 13–21 (2020). https://doi.org/10.1109/MS.2020.2999969
Gong, C., Ribiere, V.: Developing a unified definition of digital transformation. Technovation 102, 102217 (2021). https://doi.org/10.1016/j.technovation.2020.102217
Acknowledgement
This research has been supported by the Plooto Project in the European Union’s Horizon 2020 programme (GA no. 101092008).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 IFIP International Federation for Information Processing
About this paper
Cite this paper
Farmakis, T., Koukopoulos, A., Zois, G., Mourtos, I., Lounis, S., Kalaboukas, K. (2024). Developing a Circular and Resilient Information System: A Design Science Approach. In: Thürer, M., Riedel, R., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Production Management Systems for Volatile, Uncertain, Complex, and Ambiguous Environments. APMS 2024. IFIP Advances in Information and Communication Technology, vol 728. Springer, Cham. https://doi.org/10.1007/978-3-031-71622-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-71622-5_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-71621-8
Online ISBN: 978-3-031-71622-5
eBook Packages: Computer ScienceComputer Science (R0)