Chaos in a Two-Dimensional Magneto-Hydrodynamic System | SpringerLink
Skip to main content

Chaos in a Two-Dimensional Magneto-Hydrodynamic System

  • Conference paper
  • First Online:
Cellular Automata (ACRI 2024)

Abstract

The flow of an electrolyte in a shallow square horizontal cavity subject to a steady current between opposite sides in the presence of an array of external magnets is simulated using a two dimensional lattice Boltzmann equation method for different values of the Chandrasekhar number. The flow is in a viscous regime for small values of Ch and in an advective one for larger values. In this last regime and in a steady state, a fixed number of pairs of initially close ideal tracer particles are added to the flow. We find that the average distance between each pair grows exponentially in time. Then, an average Lyapunov exponent that grows as a power law of the Chandrasekhar number can be defined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6634
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 8293
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tabeling, P., Cardoso, O., Perrin, B.: Chaos in a linear array of vortices. J. Fluid Mech. 213, 511–530 (1990)

    Article  Google Scholar 

  2. Paret, J., et al.: Are flows electromagnetically forced in thin stratified layers two dimensional? Phys. Fluids 9(10), 3102–3104 (1997). https://doi.org/10.1063/1.869419

    Article  MathSciNet  Google Scholar 

  3. Rothstein, D., Henry, E., Gollub, J.P.: Persistent patterns in transient chaotic fluid mixing. Nature 401(6755), 770–772 (1999). https://doi.org/10.1038/44529

    Article  Google Scholar 

  4. Oulette, N.T., Gollub, J.P.: Curvature fields, topology, and the dynamics of spatiotemporal chaos. Phys. Rev. Lett. 99, 194502 (2007)

    Article  Google Scholar 

  5. Rechtman, R., et al.: Competition of localized thermal buoyancy and Lorentz forces in an electrolyte enclosed in a cavity. Phys. Fluids 33, 127115 (2021)

    Article  Google Scholar 

  6. Succi, S.: The Lattice Boltzmann Equation. Numerical Mathematics and Scientific Computation. Clarendon Press, Oxford (2001)

    Google Scholar 

  7. Wolf-Gladrow, D.A.: Lattice-Gas Cellular Automata and Lattice Boltzmann Models. An Introduction. LNM, vol. 1725, pp. 1–13. Springer, Heidelberg (2000)

    Google Scholar 

  8. Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511– 525 (1954). https://doi.org/10.1103/physrev.94.511

  9. Inamuro, T., et al.: A lattice Boltzmann method for a binary miscible fluid mixture and its application to a heat-transfer problem. J. Comput. Phys. 179, 201–215 (2002)

    Article  Google Scholar 

  10. Shan, X.: Simulation of Rayleigh–Bénard convection using a lattice Boltzmann method. Phys. Rev. E 55(3), 2780–2788 (1997)

    Google Scholar 

  11. He, X., Chen, S., Doolen, G.D.: A novel thermal model for the lattice Boltzmann method in incompressible limit. J. Comp. Phys. 146, 282–300 (1998)

    Article  MathSciNet  Google Scholar 

  12. Buick, J.M., Greated, C.A.: Lattice Boltzmann modeling of interfacial gravity waves. Phys. Fluids 10, 1490–1511 (1998)

    Article  MathSciNet  Google Scholar 

  13. Lallemand, P., Luo, L.S.: Theory of the lattice Boltzmann method: acoustic and thermal properties in two and three dimensions. Phys. Rev. E 68, 036706 (2003)

    Article  MathSciNet  Google Scholar 

  14. Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30(1), 329–364 (1998). https://doi.org/10.1146/annurev.fluid.30.1.329

    Article  MathSciNet  Google Scholar 

  15. McCaig, M.: Permanent Magnets in Theory and Practice. Wiley, Hoboken (1952)

    Google Scholar 

  16. Cuevas, S., Smolentsev, S., Abdou, M.A.: On the flow past a magnetic obstacle. J. Fluid Mech. 553, 227–252 (2006)

    Article  MathSciNet  Google Scholar 

  17. Román, J., Figueroa, A., Cuevas, S.: Wake patterns behind a magnetic obstacle in an electrolyte layer. Magnetohydrodynamics 53(1), 55–66 (2017)

    Article  Google Scholar 

  18. Duran-Matute, M., Trieling, R.R., Van Heijst, G.J.F.: Scaling and asymmetry in an electromagnetically forced dipolar flow structure. Phys. Rev. E 83(1), 016306 (2011)

    Article  Google Scholar 

  19. Wolf, A.: 13. Quantifying chaos with Lyapunov exponents. In: Chaos, pp. 273–290. Princeton University Press (1986). https://doi.org/10.1515/9781400858156.273

  20. Fouxon, I., et al.: Reynolds number dependence of Lyapunov exponents of turbulence and fluid particles. Phys. Rev. E 103(3), 033110 (2021). https://doi.org/10.1103/physreve.103.033110

    Article  MathSciNet  Google Scholar 

  21. Artale, V., et al.: Dispersion of passive tracers in closed basins: beyond the diffusion coefficient. Phys. Fluids 9, 3162–3171 (1997)

    Article  MathSciNet  Google Scholar 

  22. Boffetta, G., et al.: Experimental evidence of chaotic advection in a convective flow. Europhys. Lett. 48(6), 629 (1999). https://doi.org/10.1209/epl/i1999-00530-3

    Article  Google Scholar 

  23. Bian, F., Shi, D., Sun, L., Bao, F.: An efficient approach for computing the finite time Lyapunov exponent in complex three-dimensional flow based on the discrete phase model. Aerosp. Sci. Technol. 133, 108110 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Bagnoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bagnoli, F., Rechtman, R. (2024). Chaos in a Two-Dimensional Magneto-Hydrodynamic System. In: Bagnoli, F., Baetens, J., Bandini, S., Matteuzzi, T. (eds) Cellular Automata. ACRI 2024. Lecture Notes in Computer Science, vol 14978. Springer, Cham. https://doi.org/10.1007/978-3-031-71552-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71552-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71551-8

  • Online ISBN: 978-3-031-71552-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics