Pattern Formation by Collective Behavior of Competing Cellular Automata-Based Agents | SpringerLink
Skip to main content

Pattern Formation by Collective Behavior of Competing Cellular Automata-Based Agents

  • Conference paper
  • First Online:
Cellular Automata (ACRI 2024)

Abstract

We propose a novel game-theoretic multi-agent system approach to create a desired 2D pattern. We interpret a pattern formation problem as a variant of the iterated Spatial Prisoner’s Dilemma game, where evolutionary competing CA-based agents are used as learning machines. We design a payoff function reflecting a local goal of CA-based agent-players, and we show that the system of competing players is able to reach a Nash equilibrium, providing at the same time the maximization of a global criterion unknown for the agents that is related to the considered pattern formation problem. We provide experimental results showing a high performance of the pattern formation process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6634
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 8293
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Birgin, E.G., Lobato, R.D., Morabito, R.: An effective recursive partitioning approach for the packing of identical rectangles in a rectangle. J. Oper. Res. Soc. 61, 303–320 (2010)

    Article  Google Scholar 

  2. Chopard, B., Droz, M.: Cellular Automata Modeling of Physical Systems. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  3. Deutsch, A., Dormann, S., Cellular automaton modeling of biological pattern formation. Birkäuser (2005)

    Google Scholar 

  4. Nagpal, R.: Programmable pattern-formation and scale-independence. In: Minai, A.A, Bar-Yam, Y. (eds.) Unifying Themes in Complex Sytems IV, pp. 275–282 (2008)

    Google Scholar 

  5. Hoffmann, R.: Cellular automata agents form path patterns effectively. Acta Phys. Pol. B Proc. Suppl. 9(1), 63–75 (2016)

    Article  Google Scholar 

  6. Hoffmann, R., Désérable, D.: Line patterns formed by cellular automata agents. In: El Yacoubi, S., Wąs, J., Bandini, S. (eds.) ACRI 2016. LNCS, vol. 9863, pp. 424–434. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44365-2_42

    Chapter  Google Scholar 

  7. Hoffmann, R., Désérable, D.: Generating maximal domino patterns by cellular automata agents. In: Malyshkin, V. (ed.) PaCT 2017. LNCS, vol. 10421, pp. 18–31. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62932-2_2

    Chapter  Google Scholar 

  8. Hoffmann, R., Désérable, D., Seredyński, F.: A cellular automata rule placing a maximal number of dominoes in the square and diamond. J. Supercomput. 77, 9069–9087 (2021)

    Article  Google Scholar 

  9. Seredyński, F., Kulpa, T., Hoffmann, R.: Evolutionary self-optimization of large CA-based multi-agent systems. J. Comput. Sci. 68, 101994 (2023)

    Article  Google Scholar 

  10. Seredyński, F., Kulpa, T., Hoffmann, R., Désérable, D.: Coverage and lifetime optimization by self-optimizing sensor networks. Sensors 23(8), 3930 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslaw Szaban .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Szaban, M., Seredyński, M., Hoffmann, R., Désérable, D., Seredyński, F. (2024). Pattern Formation by Collective Behavior of Competing Cellular Automata-Based Agents. In: Bagnoli, F., Baetens, J., Bandini, S., Matteuzzi, T. (eds) Cellular Automata. ACRI 2024. Lecture Notes in Computer Science, vol 14978. Springer, Cham. https://doi.org/10.1007/978-3-031-71552-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71552-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71551-8

  • Online ISBN: 978-3-031-71552-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics