Hyperspectral Data Dimensionality Reduction: A Comparative Study Between PCA and Autoencoder Methods | SpringerLink
Skip to main content

Hyperspectral Data Dimensionality Reduction: A Comparative Study Between PCA and Autoencoder Methods

  • Conference paper
  • First Online:
Modelling and Simulation for Autonomous Systems (MESAS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14615))

Abstract

Hyperspectral imaging has emerged as a powerful tool for remote sensing providing detection and identification of objects of interest using their unique spectral signature. Accurate information obtained can reveal details about the physical properties of materials that are relevant to intelligence gathering. Those interesting characteristics coupled with Unmanned Aerial Vehicles (UAVs) offer the perspective of easier detection of camouflaged army gear on the battlefield. This paper presents some aspect of hyperspectral measurements and processing and focuses on workload reduction and latent data representation using Principal Component Analysis (PCA) and autoencoder techniques. Both techniques are compared through a simple segmentation method that shows their efficiency in reducing the dimensionality of the hyperspectral data, spectrum-wise and image-wise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7550
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amigo, J.M.: Hyperspectral Imaging. Elsevier (2019)

    Google Scholar 

  2. Amigo, J.M., Santos, C.: Preprocessing of hyperspectral and multispectral images. In: Amigo, J.M. (ed.) Hyperspectral Imaging, Data Handling in Science and Technology, vol. 32, pp. 37–53. Elsevier (2019). https://doi.org/10.1016/B978-0-444-63977-6.00003-1

  3. Bajorski, P.: On the reliability of PCA for complex hyperspectral data. In: 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, pp. 1–5 (2009). https://doi.org/10.1109/WHISPERS.2009.5289076

  4. Berisha, S., Shahraki, F.F., Mayerich, D., Prasad, S.: Deep learning for hyperspectral image analysis, part i: theory and algorithms. In: Prasad, S., Chanussot, J. (eds.) Hyperspectral Image Analysis. ACVPR, pp. 37–68. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38617-7_3

    Chapter  Google Scholar 

  5. Chang, C.I., et al.: Advances in Hyperspectral Data Exploitation. MDPI, Basel (2022). https://doi.org/10.3390/books978-3-0365-5796-0

  6. El Mehdi Raouhi, M.L., Kartit, H.H.A.: Unmanned aerial vehicle-based applications in smart farming: a systematic review. Int. J. Adv. Comput. Sci. Appl. 14(6) (2023)

    Google Scholar 

  7. Farrugia, J., Griffin, S., Valdramidis, V.P., Camilleri, K., Falzon, O.: Principal component analysis of hyperspectral data for early detection of mould in cheeselets. Curr. Res. Food Sci. 4, 18–27 (2021). https://doi.org/10.1016/j.crfs.2020.12.003

    Article  Google Scholar 

  8. Forgáč, R., Badidová, B., Očkay, M., Krammer, P., Javurek, M., Biľanská, M.: Contribution to pixel-based hyperspectral classification of tree species by 1D-CNN. In: 2023 Communication and Information Technologies (KIT), pp. 1–5 (2023). https://doi.org/10.1109/KIT59097.2023.10297026

  9. Grahn, H., Geladi, P.: Techniques and Applications of Hyperspectral Image Analysis. Wiley, Hoboken (2007)

    Book  Google Scholar 

  10. Kelcey, J., Lucieer, A.: Sensor correction of a 6-band multispectral imaging sensor for UAV remote sensing. Remote Sens. 4(5), 1462–1493 (2012). https://doi.org/10.3390/rs4051462

    Article  Google Scholar 

  11. Křivánek, V., Motsch, J., Bergeon, Y.: Hyperspectral data acquisition for military camouflage in vegetation – preliminary results. In: Communication and Information Technologies – KIT 2023, pp. 1–7. Tatranské Zruby (2023). https://doi.org/10.1109/KIT59097.2023.10297101

  12. Popov, M., et al.: Method for minefields mapping by imagery from unmanned aerial vehicle. Adv. Mil. Technol. 17(2), 211–229 (2022). https://doi.org/10.3849/aimt.01722

    Article  Google Scholar 

  13. Popov, M., Topolnytskyi, M., Pylypchuk, V.: A method for object classification in aerial/satellite images with incorporating geospatial information. Adv. Mil. Technol. 16(2), 309–331 (2022). https://doi.org/10.3849/aimt.01484

    Article  Google Scholar 

  14. Racek, F., Baláž, T.: Spectral angle mapper as a tool for matching the spectra in hyperspectral processing. Adv. Mil. Technol. 7(2), 65–76 (2022). https://aimt.cz/index.php/aimt/article/view/1585

  15. Racek, F., Baláž, T., Melša, P.: Hyperspectral data conversion in the case of military surveillance. Adv. Mil. Technol. 10(1), 5–13 (2015). https://aimt.cz/index.php/aimt/article/view/1054

  16. Racek, F., Baláž, T., Melša, P.: Spectral characterization of natural background in virtue of reconnaissance possibilities. In: International Conference on Military Technologies (ICMT), pp. 1–8 (2019). https://doi.org/10.1109/MILTECHS.2019.8870126

  17. Racek, F., Krejci, J.: Target acquisition performance as a criterion of camouflage pattern effectiveness. In: International Conference on Military Technologies (ICMT), pp. 1–5 (2019). https://doi.org/10.1109/MILTECHS.2019.8870042

  18. Racek, F., Krejci, J., Pemčák, I.: New approach in evaluation of camouflage pattern spectral reflectance qualities. In: International Conference on Military Technologies (ICMT), pp. 1–6 (2021). https://doi.org/10.1109/ICMT52455.2021.9502753

  19. Ramamurthy, M., Robinson, Y.H., Vimal, S., Suresh, A.: Auto encoder based dimensionality reduction and classification using convolutional neural networks for hyperspectral images. Microprocess. Microsyst. 79, 103280 (2020). https://doi.org/10.1016/j.micpro.2020.103280

    Article  Google Scholar 

  20. Rodarmel, C., Shan, J.: Principal component analysis for hyperspectral image classification. Surv. Land Inf. Syst. 62 (2002)

    Google Scholar 

  21. Shimoni, M., Haelterman, R., Perneel, C.: Hypersectral imaging for military and security applications: combining myriad processing and sensing techniques. IEEE Geosci. Remote Sens. Mag. 7(2), 101–117 (2019). https://doi.org/10.1109/MGRS.2019.2902525

    Article  Google Scholar 

  22. Sowmya, V., Soman, K.P., Hassaballah, M.: Hyperspectral image: fundamentals and advances. In: Hassaballah, M., Hosny, K.M. (eds.) Recent Advances in Computer Vision. SCI, vol. 804, pp. 401–424. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-03000-1_16

    Chapter  Google Scholar 

  23. Starý, V., Křivánek, V., Štefek, A.: Optical detection methods for laser guided unmanned devices. J. Commun. Netw. 20(5) (2018). https://doi.org/10.1109/JCN.2018.000071

  24. Su, L., Liu, J., Yuan, Y., Chen, Q.: A multi-attention autoencoder for hyperspectral unmixing based on the extended linear mixing model. Remote Sens. 15(11) (2023). https://doi.org/10.3390/rs15112898

  25. Tuohy, M., et al.: Utilizing UAV-based hyperspectral imaging to detect surficial explosive ordnance. Leading Edge 42, 98–102 (2023). https://doi.org/10.1190/tle42020098.1

  26. Urbánek, J., Baláž, T., Barta, J., Průcha, J.: Technology of computer-aided adaptive camouflage. In: International Conference on Computers and Computing (ICCC 2011), pp. 81–87 (2011)

    Google Scholar 

Download references

Acknowledgment

The work presented in this article has been supported by the Ministry of Defence and the University of Defence of the Czech Republic through the development program of the organization “VAROPS – DZRO military autonomous and robotic systems”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Motsch .

Editor information

Editors and Affiliations

Ethics declarations

Data and Materials Availability

Data associated with this research are available and can be obtained by contacting the corresponding author.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Motsch, J., Bergeon, Y., Křivánek, V. (2025). Hyperspectral Data Dimensionality Reduction: A Comparative Study Between PCA and Autoencoder Methods. In: Mazal, J., et al. Modelling and Simulation for Autonomous Systems. MESAS 2023. Lecture Notes in Computer Science, vol 14615. Springer, Cham. https://doi.org/10.1007/978-3-031-71397-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71397-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71396-5

  • Online ISBN: 978-3-031-71397-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics