Abstract
Hyperspectral imaging has emerged as a powerful tool for remote sensing providing detection and identification of objects of interest using their unique spectral signature. Accurate information obtained can reveal details about the physical properties of materials that are relevant to intelligence gathering. Those interesting characteristics coupled with Unmanned Aerial Vehicles (UAVs) offer the perspective of easier detection of camouflaged army gear on the battlefield. This paper presents some aspect of hyperspectral measurements and processing and focuses on workload reduction and latent data representation using Principal Component Analysis (PCA) and autoencoder techniques. Both techniques are compared through a simple segmentation method that shows their efficiency in reducing the dimensionality of the hyperspectral data, spectrum-wise and image-wise.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amigo, J.M.: Hyperspectral Imaging. Elsevier (2019)
Amigo, J.M., Santos, C.: Preprocessing of hyperspectral and multispectral images. In: Amigo, J.M. (ed.) Hyperspectral Imaging, Data Handling in Science and Technology, vol. 32, pp. 37–53. Elsevier (2019). https://doi.org/10.1016/B978-0-444-63977-6.00003-1
Bajorski, P.: On the reliability of PCA for complex hyperspectral data. In: 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, pp. 1–5 (2009). https://doi.org/10.1109/WHISPERS.2009.5289076
Berisha, S., Shahraki, F.F., Mayerich, D., Prasad, S.: Deep learning for hyperspectral image analysis, part i: theory and algorithms. In: Prasad, S., Chanussot, J. (eds.) Hyperspectral Image Analysis. ACVPR, pp. 37–68. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38617-7_3
Chang, C.I., et al.: Advances in Hyperspectral Data Exploitation. MDPI, Basel (2022). https://doi.org/10.3390/books978-3-0365-5796-0
El Mehdi Raouhi, M.L., Kartit, H.H.A.: Unmanned aerial vehicle-based applications in smart farming: a systematic review. Int. J. Adv. Comput. Sci. Appl. 14(6) (2023)
Farrugia, J., Griffin, S., Valdramidis, V.P., Camilleri, K., Falzon, O.: Principal component analysis of hyperspectral data for early detection of mould in cheeselets. Curr. Res. Food Sci. 4, 18–27 (2021). https://doi.org/10.1016/j.crfs.2020.12.003
Forgáč, R., Badidová, B., Očkay, M., Krammer, P., Javurek, M., Biľanská, M.: Contribution to pixel-based hyperspectral classification of tree species by 1D-CNN. In: 2023 Communication and Information Technologies (KIT), pp. 1–5 (2023). https://doi.org/10.1109/KIT59097.2023.10297026
Grahn, H., Geladi, P.: Techniques and Applications of Hyperspectral Image Analysis. Wiley, Hoboken (2007)
Kelcey, J., Lucieer, A.: Sensor correction of a 6-band multispectral imaging sensor for UAV remote sensing. Remote Sens. 4(5), 1462–1493 (2012). https://doi.org/10.3390/rs4051462
Křivánek, V., Motsch, J., Bergeon, Y.: Hyperspectral data acquisition for military camouflage in vegetation – preliminary results. In: Communication and Information Technologies – KIT 2023, pp. 1–7. Tatranské Zruby (2023). https://doi.org/10.1109/KIT59097.2023.10297101
Popov, M., et al.: Method for minefields mapping by imagery from unmanned aerial vehicle. Adv. Mil. Technol. 17(2), 211–229 (2022). https://doi.org/10.3849/aimt.01722
Popov, M., Topolnytskyi, M., Pylypchuk, V.: A method for object classification in aerial/satellite images with incorporating geospatial information. Adv. Mil. Technol. 16(2), 309–331 (2022). https://doi.org/10.3849/aimt.01484
Racek, F., Baláž, T.: Spectral angle mapper as a tool for matching the spectra in hyperspectral processing. Adv. Mil. Technol. 7(2), 65–76 (2022). https://aimt.cz/index.php/aimt/article/view/1585
Racek, F., Baláž, T., Melša, P.: Hyperspectral data conversion in the case of military surveillance. Adv. Mil. Technol. 10(1), 5–13 (2015). https://aimt.cz/index.php/aimt/article/view/1054
Racek, F., Baláž, T., Melša, P.: Spectral characterization of natural background in virtue of reconnaissance possibilities. In: International Conference on Military Technologies (ICMT), pp. 1–8 (2019). https://doi.org/10.1109/MILTECHS.2019.8870126
Racek, F., Krejci, J.: Target acquisition performance as a criterion of camouflage pattern effectiveness. In: International Conference on Military Technologies (ICMT), pp. 1–5 (2019). https://doi.org/10.1109/MILTECHS.2019.8870042
Racek, F., Krejci, J., Pemčák, I.: New approach in evaluation of camouflage pattern spectral reflectance qualities. In: International Conference on Military Technologies (ICMT), pp. 1–6 (2021). https://doi.org/10.1109/ICMT52455.2021.9502753
Ramamurthy, M., Robinson, Y.H., Vimal, S., Suresh, A.: Auto encoder based dimensionality reduction and classification using convolutional neural networks for hyperspectral images. Microprocess. Microsyst. 79, 103280 (2020). https://doi.org/10.1016/j.micpro.2020.103280
Rodarmel, C., Shan, J.: Principal component analysis for hyperspectral image classification. Surv. Land Inf. Syst. 62 (2002)
Shimoni, M., Haelterman, R., Perneel, C.: Hypersectral imaging for military and security applications: combining myriad processing and sensing techniques. IEEE Geosci. Remote Sens. Mag. 7(2), 101–117 (2019). https://doi.org/10.1109/MGRS.2019.2902525
Sowmya, V., Soman, K.P., Hassaballah, M.: Hyperspectral image: fundamentals and advances. In: Hassaballah, M., Hosny, K.M. (eds.) Recent Advances in Computer Vision. SCI, vol. 804, pp. 401–424. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-03000-1_16
Starý, V., Křivánek, V., Štefek, A.: Optical detection methods for laser guided unmanned devices. J. Commun. Netw. 20(5) (2018). https://doi.org/10.1109/JCN.2018.000071
Su, L., Liu, J., Yuan, Y., Chen, Q.: A multi-attention autoencoder for hyperspectral unmixing based on the extended linear mixing model. Remote Sens. 15(11) (2023). https://doi.org/10.3390/rs15112898
Tuohy, M., et al.: Utilizing UAV-based hyperspectral imaging to detect surficial explosive ordnance. Leading Edge 42, 98–102 (2023). https://doi.org/10.1190/tle42020098.1
Urbánek, J., Baláž, T., Barta, J., Průcha, J.: Technology of computer-aided adaptive camouflage. In: International Conference on Computers and Computing (ICCC 2011), pp. 81–87 (2011)
Acknowledgment
The work presented in this article has been supported by the Ministry of Defence and the University of Defence of the Czech Republic through the development program of the organization “VAROPS – DZRO military autonomous and robotic systems”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Data and Materials Availability
Data associated with this research are available and can be obtained by contacting the corresponding author.
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Motsch, J., Bergeon, Y., Křivánek, V. (2025). Hyperspectral Data Dimensionality Reduction: A Comparative Study Between PCA and Autoencoder Methods. In: Mazal, J., et al. Modelling and Simulation for Autonomous Systems. MESAS 2023. Lecture Notes in Computer Science, vol 14615. Springer, Cham. https://doi.org/10.1007/978-3-031-71397-2_20
Download citation
DOI: https://doi.org/10.1007/978-3-031-71397-2_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-71396-5
Online ISBN: 978-3-031-71397-2
eBook Packages: Computer ScienceComputer Science (R0)