Challenges Associated with the Deployment of Autonomous Reconnaissance Systems on Future Battlefields | SpringerLink
Skip to main content

Challenges Associated with the Deployment of Autonomous Reconnaissance Systems on Future Battlefields

  • Conference paper
  • First Online:
Modelling and Simulation for Autonomous Systems (MESAS 2023)

Abstract

The article describes the possibilities of using autonomous robotic systems in conducting reconnaissance in military operations. It identifies the advantages, disadvantages and limitations of and to their effective deployment in open terrain and for reconnaissance in built-up areas. The proposed option to address the problem areas is the Modular Robotic Reconnaissance System, which consists of an interconnected and cooperating ground and air part in the form of an Unmanned Ground System and Unmanned Aircraft System. By simultaneously operating on the ground and at different flight altitudes in the air, the system allows commanders to develop a more comprehensive view of the battlefield situation and to explore rugged terrain, including built-up areas. The communication link between all elements of the system, other systems and commanders on the battlefield is designed on the basis of the wave relay MANET radio network. Flexibility of deployment and long-term sustainability in military operations is a key requirement for planning and controlling the operation of robotic systems, for which the Tactical Decision Support System and its mathematical algorithmic models can be used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7550
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brannsten, M.R., Johnsen, F.T., Bloebaum, T.H., Lund, K.: Toward federated mission networking in the tactical domain. Commun. Mag. 53, 52–58 (2015). https://doi.org/10.1109/MCOM.2015.7295463

    Article  Google Scholar 

  2. Federated Mission Networking. NATO Allied Command Transformation, Brussels (2015). https://web.archive.org/web/20190128083216/https://www.act.nato.int/fmn

  3. Sharma, S.: Unmanned ground vehicles: global developments and future battlefield. IDR Indian Defence Review, New Delhi, India (2022). http://www.indiandefencereview.com/spotlights/unmanned-ground-vehicles-global-developments-and-future-battlefield/

  4. Indago 3 – UAV, Lockheed Martin, Bethesda, Maryland, USA (2023). https://www.lockheedmartin.com/en-us/products/indago-vtol-uav.html

  5. Ding, Y., Xin, B., Chen, J.: A review of recent advances in coordination between unmanned aerial and ground vehicles. Unmanned Syst. 09, 97–117 (2020). https://doi.org/10.1142/s2301385021500084

    Article  Google Scholar 

  6. Zhang, J., Yue, X., Zhang, H., Xiao, T.: Optimal unmanned ground vehicle—unmanned aerial vehicle formation-maintenance control for air-ground cooperation. Appl. Sci. 12, 3598 (2022). https://doi.org/10.3390/app12073598

    Article  Google Scholar 

  7. Lazna, T., Gabrlik, P., Jilek, T., Zalud, L.: Cooperation between an unmanned aerial vehicle and an unmanned ground vehicle in highly accurate localization of gamma radiation hotspots. Int. J. Adv. Robot. Syst. 15(1) (2018). https://doi.org/10.1177/1729881417750787

  8. Gross, J., et al.: Field-testing of a UAV-UGV team for GNSS-denied navigation in subterranean environments. In: Proceedings of the 32nd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2019), Miami, Florida, USA, pp. 2112–2124 (2019). https://doi.org/10.33012/2019.16912

  9. Moafipoor, S., Bock, L., Fayman, J.A., Conroy, E.: Vision-based collaborative navigation for UAV-UGV-dismounted units in GPS challenged environments. In: Proceedings of the 33rd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2020), Miami, Florida, USA, pp. 573–584 (2020). https://doi.org/10.33012/2020.17684

  10. Baca, T., et al.: Autonomous landing on a moving vehicle with an unmanned aerial vehicle. J. Field Robot. 36(5), 874–891 (2019). ISSN: 1556-4959. https://doi.org/10.1002/rob.21858

  11. Uppal, R.: Russia deployed family of killer robots, for combat and demining in Syria and for counter terrorism operations. IDST International defense, Security & Technology, San Jose, USA (2019). https://idstch.com/military/army/russia-developing-family-of-killer-robots-conduct-war-games/

  12. Shachtman, N.: First Armed Robots on Patrol in Iraq (Updated). WIRED, New York (2007). https://www.wired.com/2007/08/httpwwwnational/

  13. Combat robots & drones used at Zapad 2017 episodes, Kaliningrad region. Ministry of Defence of the Russian Federation, Moscow, Russia (2017). https://www.eng.mil.ru/en/news_page/country/more.htm?id=12142814@egNews

  14. Bendett, S.: Russian unmanned vehicle developments: Syria and beyond. In: Mankoff, J. (ed.) JSTOR: Improvisation and Adaptability in the Russian Military, pp. 38–47. Center for Strategic and International Studies and JSTOR, New York (2020). http://www.jstor.com/stable/resrep24241.9

  15. Roblin, S.: Israel is sending robots with machine guns to the Gaza border. The Daily Beast Company LLC, USA (2021). https://www.thedailybeast.com/israel-is-sending-robots-with-machine-guns-to-the-gaza-border

  16. Developing remote-controlled robots to clear roadside bombs: North Atlantic treaty organization, Brussels, Belgium (2013). https://www.nato.int/cps/en/natolive/news_94095.htm

  17. Just, J.: Rusku jako zemi válka v Sýrii prakticky nic nedala. Úspěch Kremlu zůstal občany nedoceněný. MAFRA, Prague, Czechia (2021). ISSN: 1213-1385 https://www.lidovky.cz/svet/rusku-jako-zemi-valka-v-syrii-prakticky-nic-nedala-uspech-kremlu-zustal-obcany-nedoceneny.A210315_182411_ln_zahranici_lros?

  18. Roblin, S.: What happened when Russia tested its Uran-9 robot tank in Syria? The national interest. Center for the National Interest, Washington, DC, USA (2021). https://nationalinterest.org/blog/reboot/what-happened-when-russia-tested-its-uran-9-robot-tank-syria-182143

  19. Uran-6 Mine-Clearing Robot. Army technology. Verdict Media Limited, London (2016). https://www.army-technology.com/projects/uran-6-mine-clearing-robot/

  20. Türke, A.I.: Russian robot technology in Syria. CERPESC, Europa Varietas Institute, Switzerland (2016). https://europavarietas.org/csdp/csdpblog/russian_robot_technology_syria

  21. Thomas, T.: Russian lessons learned in Syria: an assessment, pp. 1–27. MITRE Corporation, McLean, Case Number #19–3483 (2020)

    Google Scholar 

  22. Weisswange, J.-P.: Spring storm 2019: weapons carrier UGV themis again in action. Europäische Sicherheit & Technik, Bonn (2019). https://esut.de/en/2019/06/meldungen/land/13283/spring-storm-2019-waffentraeger-ugv-themis-im-einsatz/

  23. Turkey to use unmanned land vehicles in Afrin. TRT WORLD, Istanbul (2018). https://www.trtworld.com/turkey/turkey-to-use-unmanned-land-vehicles-in-afrin-15439

  24. Kelly, F.: Turkey says armed unmanned ground vehicles to be used in Efrin operation. The Defense Post, Washington D.C., USA (2018). https://www.thedefensepost.com/2018/02/22/turkey-armed-unmanned-ground-vehicles-afrin-syria/

  25. Nohel, J.: Possibilities of raster mathematical algorithmic models utilization as an information support of military decision making process. In: Mazal, J. (ed.) MESAS 2018. LNCS, vol. 11472, pp. 553–565. Springer, Cham (2019). ISSN: 0302-9743. ISBN: 978-3-030-14984-0. https://doi.org/10.1007/978-3-030-14984-0_41

    Chapter  Google Scholar 

  26. Kotikalapudi, P., Elangovan, V.: Obstacle avoidance and path finding for mobile robot navigation, pp. 333–344. AIRCC Publishing Corporation, Chennai (2020). https://doi.org/10.5121/csit.2020.101425

  27. Alkawaz, A.N., Al-qassar, A.: Obstacle avoidance techniques for robot path planning. J. Eng. Sci. 56–65 (2019). ISSN: 2312-2498. https://doi.org/10.26367/DJES/VOL.12/NO.1/7

  28. Stodola, P., Drozd, J., Nohel, J., Michenka, K.: Model of observation posts deployment in tactical decision support system. In: Mazal, J., Fagiolini, A., Vasik, P. (eds.) MESAS 2019. LNCS, vol. 11995, pp. 231–243. Springer, Cham (2020). ISSN: 0302-9743. ISBN: 978-3-030-43890-6. https://doi.org/10.1007/978-3-030-43890-6_18

    Chapter  Google Scholar 

  29. Bhaskar, M., Manjunatha, P.: Signal jamming autonomous rover. Int. Res. J. Eng. Technol. 8, 1577 (2022). e-ISSN: 2395-0056. p-ISSN: 2395-0072. Fast track publications, Tamilnadu, India

    Google Scholar 

  30. Krátký, M., Minařík, V., Šustr, M., Ivan, J.: Electronic warfare methods combatting UAVs. Adv. Sci. Technol. Eng. Syst. J. 5(6), 447–454 (2020). ISSN: 2415-6698. https://doi.org/10.25046/aj050653

  31. Hrnčiar, M., Kompan, J.: Factors shaping the employment of military force from the perspective of the war in Ukraine. Vojenské rozhledy 32(1), 069–082 (2023). ISSN: 1210-3292 (print), 2336-2995 (online). https://doi.org/10.3849/2336-2995.32.2023.01.069-082. http://www.vojenskerozhledy.cz

  32. Nohel, J., Flasar, Z.: Maneuver control system CZ. In: Mazal, J., Fagiolini, A., Vasik, P. (eds.) MESAS 2019. LNCS, vol. 11995, pp. 379–388. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43890-6_31

    Chapter  Google Scholar 

  33. Nohel, J., Stodola, P., Flasar, Z.: Combat UGV support of company task force operations. In: Mazal, J., Fagiolini, A., Vasik, P., Turi, M. (eds.) MESAS 2020. LNCS, vol. 12619, pp. 29–42. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-70740-8_3

    Chapter  Google Scholar 

  34. Nohel, J., Zahradníček, P., Flasar, Z., Stodola, P.: Modelling the manoeuvres of ground reconnaissance elements in urban areas. In: 2021 Communication and Information Technologies Conference Proceedings, pp. 118–123. The Armed Forces Academy of General Milan Rastislav Štefánik, Liptovský Mikuláš (2021). ISBN: 978-1-6654-2880-4. https://doi.org/10.1109/KIT52904.2021.9583749

  35. Stodola, P., Nohel, J.: Reconnaissance in complex environment with no-fly zones using a swarm of unmanned aerial vehicles. In: Mazal, J., et al. (eds.) MESAS 2021. LNCS, vol. 13207, pp. 308–321. Springer, Cham (2022). ISSN: 0302-9743. ISBN: 978-3-030-98259-1. https://doi.org/10.1007/978-3-030-98260-7_19

    Chapter  Google Scholar 

  36. Nohel, J., Stodola, P., Flasar, Z., Křišťálová, D., Zahradníček, P., Rak, L.: Swarm maneuver of combat UGVs on the future digital battlefield. In: Mazal, J., et al. (eds.) MESAS 2022. LNCS, vol. 13866, pp. 209–230. Springer, Cham (2023). ISSN: 0302-9743. ISBN: 978-3-031-31267-0. https://doi.org/10.1007/978-3-031-31268-7_12

    Chapter  Google Scholar 

  37. Stodola, P., Drozd, J., Nohel, J., Hodický, J., Procházka, D.: Trajectory optimization in a cooperative aerial reconnaissance model. Sensors 19(12), 1–18 (2019). ISSN: 1424-8220. IF 3,275. https://doi.org/10.3390/s19122823

  38. Vandapel, N., Donamukkala, R.R., Hebert, M.: Unmanned ground vehicle navigation using aerial ladar data. Int. J. Robot. Res. 25(1), 31–51 (2006). ISSN: 0278-3649, ISSN: 1741-3176 (on-line). https://doi.org/10.1177/0278364906061161

  39. Hu, D., Gan, V.J.L., Wang, T., Ma, L.: Multiagent robotic system (MARS) for UAV-UGV path planning and automatic sensory data collection in cluttered environments. Build. Environ. 221, 109349 (2022). ISSN: 0360-1323 (print). ISSN: 1873-684X (on-line). https://doi.org/10.1016/j.buildenv.2022.109349

  40. MEMS Inertial Measurement Units for Complex Motion Capture and Processing [online]. 21.3.2023, Analog Devices, Norwood, Massachusetts, USA, (2013). https://www.analog.com/media/en/news-marketing-collateral/solutions-bulletins-brochures/mems-imu-brochure.pdf

  41. Drozd, J., Stodola, P., Rak, L., Zahradníček, P., Hodický, J.: Effectiveness evaluation of aerial reconnaissance in battalion force protection operation using the constructive simulation. J. Defense Model/ Simul.-Appl. Methodol. Technol. – JDMS 1–15 (2021). ISSN: 1548-5129. ISSN: 1557-380X (on-line). https://doi.org/10.1177/15485129211040373

  42. Schachter, B.J.: Automatic Target Recognition, 3rd edn, p. 330. SPIE Press, Bellingham (2018). ISBN: 9781510618572. https://doi.org/10.1117/3.2315926

  43. Rak, L., Vlkovský, M., Zahradníček, P.: Application of live simulation tool into the military training program. In: 2022 26th International Conference on Circuits, Systems, Communications and Computers (CSCC), Crete, Greece, vol. 26, no. 1, pp. 99–106. IEEE (2022). ISBN: 978-1-6654-8186-1. https://doi.org/10.1109/CSCC55931.2022.00027

  44. University of Defence introduces robotic vehicles. NATO days: News. Jagello 2000, Ostrava, Czech Republic (2014). https://www.natodays.cz/news/university-of-defence-introduces-robotic-vehicles

  45. Šelek, A., Seder, M., Petrović, I.: Smooth autonomous patrolling for a differential-drive mobile robot in dynamic environments. Sensors 23(17), 7421 (2023). https://doi.org/10.3390/s23177421

    Article  Google Scholar 

  46. Šelek, A., Seder, M., Brezak, M., Petrović, I.: Smooth complete coverage trajectory planning algorithm for a nonholonomic robot. Sensors 22(23), 9269 (2022). https://doi.org/10.3390/s22239269

    Article  Google Scholar 

  47. JUMP 20 Group 3 medium UAS. AV AeroVironment. AeroVironment, Arlington, Virginie, USA (2023). https://www.avinc.com/uas/jump-20

  48. Ivan, J., Šustr, M., Pekař, O., Potužák, L.: Prospects for the use of unmanned ground vehicles in artillery survey. In: Gini, G., Nijmeijer, H., Burgard, W., Filev, D. (eds.) Proceedings of the 19th International Conference on Informatics in Control, Automation and Robotics (ICINCO), pp. 467–475. SCITEPRESS, Lisabon (2022). ISSN: 2184-2809. ISBN: 978-989-758-585-2. https://doi.org/10.5220/0011300100003271

  49. Šustr, M., Ivan, J., Blaha, M., Potužák, L.: A manual method of artillery fires correction calculation. Mil. Oper. Res. 27(3), 77–94 (2022). ISSN: 1082-5983. IF 0,417. https://doi.org/10.5711/1082598327377

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Nohel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nohel, J., Stodola, P., Zezula, J., Flasar, Z., Hrdinka, J. (2025). Challenges Associated with the Deployment of Autonomous Reconnaissance Systems on Future Battlefields. In: Mazal, J., et al. Modelling and Simulation for Autonomous Systems. MESAS 2023. Lecture Notes in Computer Science, vol 14615. Springer, Cham. https://doi.org/10.1007/978-3-031-71397-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71397-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71396-5

  • Online ISBN: 978-3-031-71397-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics