Abstract
The article describes the possibilities of using autonomous robotic systems in conducting reconnaissance in military operations. It identifies the advantages, disadvantages and limitations of and to their effective deployment in open terrain and for reconnaissance in built-up areas. The proposed option to address the problem areas is the Modular Robotic Reconnaissance System, which consists of an interconnected and cooperating ground and air part in the form of an Unmanned Ground System and Unmanned Aircraft System. By simultaneously operating on the ground and at different flight altitudes in the air, the system allows commanders to develop a more comprehensive view of the battlefield situation and to explore rugged terrain, including built-up areas. The communication link between all elements of the system, other systems and commanders on the battlefield is designed on the basis of the wave relay MANET radio network. Flexibility of deployment and long-term sustainability in military operations is a key requirement for planning and controlling the operation of robotic systems, for which the Tactical Decision Support System and its mathematical algorithmic models can be used.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Brannsten, M.R., Johnsen, F.T., Bloebaum, T.H., Lund, K.: Toward federated mission networking in the tactical domain. Commun. Mag. 53, 52–58 (2015). https://doi.org/10.1109/MCOM.2015.7295463
Federated Mission Networking. NATO Allied Command Transformation, Brussels (2015). https://web.archive.org/web/20190128083216/https://www.act.nato.int/fmn
Sharma, S.: Unmanned ground vehicles: global developments and future battlefield. IDR Indian Defence Review, New Delhi, India (2022). http://www.indiandefencereview.com/spotlights/unmanned-ground-vehicles-global-developments-and-future-battlefield/
Indago 3 – UAV, Lockheed Martin, Bethesda, Maryland, USA (2023). https://www.lockheedmartin.com/en-us/products/indago-vtol-uav.html
Ding, Y., Xin, B., Chen, J.: A review of recent advances in coordination between unmanned aerial and ground vehicles. Unmanned Syst. 09, 97–117 (2020). https://doi.org/10.1142/s2301385021500084
Zhang, J., Yue, X., Zhang, H., Xiao, T.: Optimal unmanned ground vehicle—unmanned aerial vehicle formation-maintenance control for air-ground cooperation. Appl. Sci. 12, 3598 (2022). https://doi.org/10.3390/app12073598
Lazna, T., Gabrlik, P., Jilek, T., Zalud, L.: Cooperation between an unmanned aerial vehicle and an unmanned ground vehicle in highly accurate localization of gamma radiation hotspots. Int. J. Adv. Robot. Syst. 15(1) (2018). https://doi.org/10.1177/1729881417750787
Gross, J., et al.: Field-testing of a UAV-UGV team for GNSS-denied navigation in subterranean environments. In: Proceedings of the 32nd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2019), Miami, Florida, USA, pp. 2112–2124 (2019). https://doi.org/10.33012/2019.16912
Moafipoor, S., Bock, L., Fayman, J.A., Conroy, E.: Vision-based collaborative navigation for UAV-UGV-dismounted units in GPS challenged environments. In: Proceedings of the 33rd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2020), Miami, Florida, USA, pp. 573–584 (2020). https://doi.org/10.33012/2020.17684
Baca, T., et al.: Autonomous landing on a moving vehicle with an unmanned aerial vehicle. J. Field Robot. 36(5), 874–891 (2019). ISSN: 1556-4959. https://doi.org/10.1002/rob.21858
Uppal, R.: Russia deployed family of killer robots, for combat and demining in Syria and for counter terrorism operations. IDST International defense, Security & Technology, San Jose, USA (2019). https://idstch.com/military/army/russia-developing-family-of-killer-robots-conduct-war-games/
Shachtman, N.: First Armed Robots on Patrol in Iraq (Updated). WIRED, New York (2007). https://www.wired.com/2007/08/httpwwwnational/
Combat robots & drones used at Zapad 2017 episodes, Kaliningrad region. Ministry of Defence of the Russian Federation, Moscow, Russia (2017). https://www.eng.mil.ru/en/news_page/country/more.htm?id=12142814@egNews
Bendett, S.: Russian unmanned vehicle developments: Syria and beyond. In: Mankoff, J. (ed.) JSTOR: Improvisation and Adaptability in the Russian Military, pp. 38–47. Center for Strategic and International Studies and JSTOR, New York (2020). http://www.jstor.com/stable/resrep24241.9
Roblin, S.: Israel is sending robots with machine guns to the Gaza border. The Daily Beast Company LLC, USA (2021). https://www.thedailybeast.com/israel-is-sending-robots-with-machine-guns-to-the-gaza-border
Developing remote-controlled robots to clear roadside bombs: North Atlantic treaty organization, Brussels, Belgium (2013). https://www.nato.int/cps/en/natolive/news_94095.htm
Just, J.: Rusku jako zemi válka v Sýrii prakticky nic nedala. Úspěch Kremlu zůstal občany nedoceněný. MAFRA, Prague, Czechia (2021). ISSN: 1213-1385 https://www.lidovky.cz/svet/rusku-jako-zemi-valka-v-syrii-prakticky-nic-nedala-uspech-kremlu-zustal-obcany-nedoceneny.A210315_182411_ln_zahranici_lros?
Roblin, S.: What happened when Russia tested its Uran-9 robot tank in Syria? The national interest. Center for the National Interest, Washington, DC, USA (2021). https://nationalinterest.org/blog/reboot/what-happened-when-russia-tested-its-uran-9-robot-tank-syria-182143
Uran-6 Mine-Clearing Robot. Army technology. Verdict Media Limited, London (2016). https://www.army-technology.com/projects/uran-6-mine-clearing-robot/
Türke, A.I.: Russian robot technology in Syria. CERPESC, Europa Varietas Institute, Switzerland (2016). https://europavarietas.org/csdp/csdpblog/russian_robot_technology_syria
Thomas, T.: Russian lessons learned in Syria: an assessment, pp. 1–27. MITRE Corporation, McLean, Case Number #19–3483 (2020)
Weisswange, J.-P.: Spring storm 2019: weapons carrier UGV themis again in action. Europäische Sicherheit & Technik, Bonn (2019). https://esut.de/en/2019/06/meldungen/land/13283/spring-storm-2019-waffentraeger-ugv-themis-im-einsatz/
Turkey to use unmanned land vehicles in Afrin. TRT WORLD, Istanbul (2018). https://www.trtworld.com/turkey/turkey-to-use-unmanned-land-vehicles-in-afrin-15439
Kelly, F.: Turkey says armed unmanned ground vehicles to be used in Efrin operation. The Defense Post, Washington D.C., USA (2018). https://www.thedefensepost.com/2018/02/22/turkey-armed-unmanned-ground-vehicles-afrin-syria/
Nohel, J.: Possibilities of raster mathematical algorithmic models utilization as an information support of military decision making process. In: Mazal, J. (ed.) MESAS 2018. LNCS, vol. 11472, pp. 553–565. Springer, Cham (2019). ISSN: 0302-9743. ISBN: 978-3-030-14984-0. https://doi.org/10.1007/978-3-030-14984-0_41
Kotikalapudi, P., Elangovan, V.: Obstacle avoidance and path finding for mobile robot navigation, pp. 333–344. AIRCC Publishing Corporation, Chennai (2020). https://doi.org/10.5121/csit.2020.101425
Alkawaz, A.N., Al-qassar, A.: Obstacle avoidance techniques for robot path planning. J. Eng. Sci. 56–65 (2019). ISSN: 2312-2498. https://doi.org/10.26367/DJES/VOL.12/NO.1/7
Stodola, P., Drozd, J., Nohel, J., Michenka, K.: Model of observation posts deployment in tactical decision support system. In: Mazal, J., Fagiolini, A., Vasik, P. (eds.) MESAS 2019. LNCS, vol. 11995, pp. 231–243. Springer, Cham (2020). ISSN: 0302-9743. ISBN: 978-3-030-43890-6. https://doi.org/10.1007/978-3-030-43890-6_18
Bhaskar, M., Manjunatha, P.: Signal jamming autonomous rover. Int. Res. J. Eng. Technol. 8, 1577 (2022). e-ISSN: 2395-0056. p-ISSN: 2395-0072. Fast track publications, Tamilnadu, India
Krátký, M., Minařík, V., Šustr, M., Ivan, J.: Electronic warfare methods combatting UAVs. Adv. Sci. Technol. Eng. Syst. J. 5(6), 447–454 (2020). ISSN: 2415-6698. https://doi.org/10.25046/aj050653
Hrnčiar, M., Kompan, J.: Factors shaping the employment of military force from the perspective of the war in Ukraine. Vojenské rozhledy 32(1), 069–082 (2023). ISSN: 1210-3292 (print), 2336-2995 (online). https://doi.org/10.3849/2336-2995.32.2023.01.069-082. http://www.vojenskerozhledy.cz
Nohel, J., Flasar, Z.: Maneuver control system CZ. In: Mazal, J., Fagiolini, A., Vasik, P. (eds.) MESAS 2019. LNCS, vol. 11995, pp. 379–388. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43890-6_31
Nohel, J., Stodola, P., Flasar, Z.: Combat UGV support of company task force operations. In: Mazal, J., Fagiolini, A., Vasik, P., Turi, M. (eds.) MESAS 2020. LNCS, vol. 12619, pp. 29–42. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-70740-8_3
Nohel, J., Zahradníček, P., Flasar, Z., Stodola, P.: Modelling the manoeuvres of ground reconnaissance elements in urban areas. In: 2021 Communication and Information Technologies Conference Proceedings, pp. 118–123. The Armed Forces Academy of General Milan Rastislav Štefánik, Liptovský Mikuláš (2021). ISBN: 978-1-6654-2880-4. https://doi.org/10.1109/KIT52904.2021.9583749
Stodola, P., Nohel, J.: Reconnaissance in complex environment with no-fly zones using a swarm of unmanned aerial vehicles. In: Mazal, J., et al. (eds.) MESAS 2021. LNCS, vol. 13207, pp. 308–321. Springer, Cham (2022). ISSN: 0302-9743. ISBN: 978-3-030-98259-1. https://doi.org/10.1007/978-3-030-98260-7_19
Nohel, J., Stodola, P., Flasar, Z., Křišťálová, D., Zahradníček, P., Rak, L.: Swarm maneuver of combat UGVs on the future digital battlefield. In: Mazal, J., et al. (eds.) MESAS 2022. LNCS, vol. 13866, pp. 209–230. Springer, Cham (2023). ISSN: 0302-9743. ISBN: 978-3-031-31267-0. https://doi.org/10.1007/978-3-031-31268-7_12
Stodola, P., Drozd, J., Nohel, J., Hodický, J., Procházka, D.: Trajectory optimization in a cooperative aerial reconnaissance model. Sensors 19(12), 1–18 (2019). ISSN: 1424-8220. IF 3,275. https://doi.org/10.3390/s19122823
Vandapel, N., Donamukkala, R.R., Hebert, M.: Unmanned ground vehicle navigation using aerial ladar data. Int. J. Robot. Res. 25(1), 31–51 (2006). ISSN: 0278-3649, ISSN: 1741-3176 (on-line). https://doi.org/10.1177/0278364906061161
Hu, D., Gan, V.J.L., Wang, T., Ma, L.: Multiagent robotic system (MARS) for UAV-UGV path planning and automatic sensory data collection in cluttered environments. Build. Environ. 221, 109349 (2022). ISSN: 0360-1323 (print). ISSN: 1873-684X (on-line). https://doi.org/10.1016/j.buildenv.2022.109349
MEMS Inertial Measurement Units for Complex Motion Capture and Processing [online]. 21.3.2023, Analog Devices, Norwood, Massachusetts, USA, (2013). https://www.analog.com/media/en/news-marketing-collateral/solutions-bulletins-brochures/mems-imu-brochure.pdf
Drozd, J., Stodola, P., Rak, L., Zahradníček, P., Hodický, J.: Effectiveness evaluation of aerial reconnaissance in battalion force protection operation using the constructive simulation. J. Defense Model/ Simul.-Appl. Methodol. Technol. – JDMS 1–15 (2021). ISSN: 1548-5129. ISSN: 1557-380X (on-line). https://doi.org/10.1177/15485129211040373
Schachter, B.J.: Automatic Target Recognition, 3rd edn, p. 330. SPIE Press, Bellingham (2018). ISBN: 9781510618572. https://doi.org/10.1117/3.2315926
Rak, L., Vlkovský, M., Zahradníček, P.: Application of live simulation tool into the military training program. In: 2022 26th International Conference on Circuits, Systems, Communications and Computers (CSCC), Crete, Greece, vol. 26, no. 1, pp. 99–106. IEEE (2022). ISBN: 978-1-6654-8186-1. https://doi.org/10.1109/CSCC55931.2022.00027
University of Defence introduces robotic vehicles. NATO days: News. Jagello 2000, Ostrava, Czech Republic (2014). https://www.natodays.cz/news/university-of-defence-introduces-robotic-vehicles
Šelek, A., Seder, M., Petrović, I.: Smooth autonomous patrolling for a differential-drive mobile robot in dynamic environments. Sensors 23(17), 7421 (2023). https://doi.org/10.3390/s23177421
Šelek, A., Seder, M., Brezak, M., Petrović, I.: Smooth complete coverage trajectory planning algorithm for a nonholonomic robot. Sensors 22(23), 9269 (2022). https://doi.org/10.3390/s22239269
JUMP 20 Group 3 medium UAS. AV AeroVironment. AeroVironment, Arlington, Virginie, USA (2023). https://www.avinc.com/uas/jump-20
Ivan, J., Šustr, M., Pekař, O., Potužák, L.: Prospects for the use of unmanned ground vehicles in artillery survey. In: Gini, G., Nijmeijer, H., Burgard, W., Filev, D. (eds.) Proceedings of the 19th International Conference on Informatics in Control, Automation and Robotics (ICINCO), pp. 467–475. SCITEPRESS, Lisabon (2022). ISSN: 2184-2809. ISBN: 978-989-758-585-2. https://doi.org/10.5220/0011300100003271
Šustr, M., Ivan, J., Blaha, M., Potužák, L.: A manual method of artillery fires correction calculation. Mil. Oper. Res. 27(3), 77–94 (2022). ISSN: 1082-5983. IF 0,417. https://doi.org/10.5711/1082598327377
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Nohel, J., Stodola, P., Zezula, J., Flasar, Z., Hrdinka, J. (2025). Challenges Associated with the Deployment of Autonomous Reconnaissance Systems on Future Battlefields. In: Mazal, J., et al. Modelling and Simulation for Autonomous Systems. MESAS 2023. Lecture Notes in Computer Science, vol 14615. Springer, Cham. https://doi.org/10.1007/978-3-031-71397-2_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-71397-2_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-71396-5
Online ISBN: 978-3-031-71397-2
eBook Packages: Computer ScienceComputer Science (R0)