Multi-platform Framing Analysis: A Case Study of Kristiansand Quran Burning | SpringerLink
Skip to main content

Multi-platform Framing Analysis: A Case Study of Kristiansand Quran Burning

  • Conference paper
  • First Online:
Disinformation in Open Online Media (MISDOOM 2024)

Abstract

The framing of events in various media and discourse spaces is crucial in the era of misinformation and polarization. Many studies, however, are limited to specific media or networks, disregarding the importance of cross-platform diffusion. This study overcomes that limitation by conducting a multi-platform framing analysis on Twitter, YouTube, and traditional media analyzing the 2019 Koran burning in Kristiansand, Norway. It examines media and policy frames and uncovers network connections through shared URLs. The findings show that online news emphasizes the incident’s legality, while social media focuses on its morality, with harsh hate speech prevalent in YouTube comments. Additionally, YouTube is identified as the most self-contained community, whereas Twitter is the most open to external inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 4346
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 5433
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://valonaintelligence.com/.

References

  1. Bruns, A.: Gatewatching and News Curation: Journalism, Social Media, and the Public Sphere (Digital Formations, Volume 113). Peter Lang Publishing, Lausanne (2018)

    Google Scholar 

  2. Entman, R.M.: Framing: toward clarification of a fractured paradigm. J. Commun. 43(4), 51–58 (1993)

    Article  Google Scholar 

  3. Jung, A.K., Mirbabaie, M., Ross, B., Stieglitz, S., Neuberger, C., Kapidzic, S.: Information diffusion between twitter and online media (2018)

    Google Scholar 

  4. Hasan, H., Hashim, L.: What’s new in online news. In: PACIS 2009 Proceedings, p. 42 (2009)

    Google Scholar 

  5. Bateson, G.: A Theory of Play and Fantasy. MIT Press, Boston (1972)

    Google Scholar 

  6. Goffman, E.: Frame Analysis: An Essay on the Organization of Experience. Harvard University Press, Cambridge (1974)

    Google Scholar 

  7. Schaffner, B.F., Sellers, P.J.: Winning with words. In: The Origins and Impact of Political Framing, New York, London (2010)

    Google Scholar 

  8. Orlikowski, W.J., Gash, D.C.: Technological frames: making sense of information technology in organizations. ACM Trans. Inf. Syst. (TOIS) 12(2), 174–207 (1994)

    Article  Google Scholar 

  9. Touri, M., Koteyko, N.: Using corpus linguistic software in the extraction of news frames: towards a dynamic process of frame analysis in journalistic texts. Int. J. Soc. Res. Methodol. 18(6), 601–616 (2015)

    Article  Google Scholar 

  10. Matthes, J., Kohring, M.: The content analysis of media frames: toward improving reliability and validity. J. Commun. 58(2), 258–279 (2008)

    Article  Google Scholar 

  11. Van Gorp, B., Vercruysse, T.: Frames and counter-frames giving meaning to dementia: a framing analysis of media content. Soc. Sci. Med. 74(8), 1274–1281 (2012)

    Article  Google Scholar 

  12. Boydstun, A.E., Card, D., Gross, J.H., Resnik, P., Smith, N.A.: Tracking the development of media frames within and across policy issues. In: APSA 2014 Annual Meeting Paper (2014)

    Google Scholar 

  13. Card, D., Boydstun, A., Gross, J.H., Resnik, P., Smith, N.A.: The media frames corpus: annotations of frames across issues. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), pp. 438–444 (2015)

    Google Scholar 

  14. Chadwick, A., Dennis, J., Smith, A.P.: Politics in the age of hybrid media: power, systems, and media logics. In: The Routledge Companion to Social Media and Politics, pp. 7–22. Routledge, London (2015)

    Google Scholar 

  15. Meraz, S., Papacharissi, Z.: Networked gatekeeping and networked framing on# Egypt. Int. J. Press/Polit. 18(2), 138–166 (2013)

    Article  Google Scholar 

  16. Kermani, H., Adham, M.: Mapping Persian Twitter: networks and mechanism of political communication in Iranian 2017 presidential election. Big Data Soc. 8(1), 20539517211025570 (2021)

    Article  Google Scholar 

  17. Walsh, J.P.: Digital nativism: Twitter, migration discourse and the 2019 election. New Media Soc. 25(10), 2618–2643 (2023)

    Article  Google Scholar 

  18. Knüpfer, C., Hoffmann, M., Voskresenskii, V.: Hijacking metoo: transnational dynamics and networked frame contestation on the far right in the case of the ‘120 decibels’ campaign. Inf. Commun. Soc. 25(7), 1010–1028 (2022)

    Article  Google Scholar 

  19. Pöyhtäri, R., Nelimarkka, M., Nikunen, K., Ojala, M., Pantti, M., Pääkkönen, J.: Refugee debate and networked framing in the hybrid media environment. Int. Commun. Gaz. 83(1), 81–102 (2021)

    Article  Google Scholar 

  20. Zafarani, R., Abbasi, M.A., Liu, H.: Social Media Mining: An Introduction. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  21. Shahi, G.K., Dirkson, A., Majchrzak, T.A.: An exploratory study of COVID-19 misinformation on Twitter. Online So. Netw. Media 22, 100104 (2021)

    Article  Google Scholar 

  22. Shahi, G.K., Kana Tsoplefack, W.: Mitigating harmful content on social media using an interactive user interface. In: Hopfgartner, F., Jaidka, K., Mayr, P., Jose, J., Breitsohl, J. (eds.) SocInfo 2022. LNCS, vol. 13618, pp. 490–505. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19097-1_34

    Chapter  Google Scholar 

  23. Liu, L., Wang, X., Zheng, Y., Fang, W., Tang, S., Zheng, Z.: Homogeneity trend on social networks changes evolutionary advantage in competitive information diffusion. New J. Phys. 22(1), 013019 (2020)

    Article  MathSciNet  Google Scholar 

  24. Syn, S.Y., Oh, S.: Why do social network site users share information on Facebook and Twitter? J. Inf. Sci. 41(5), 553–569 (2015)

    Article  Google Scholar 

  25. Su, C., Guan, X., Du, Y., Huang, X., Zhang, M.: Toward capturing heterogeneity for inferring diffusion networks: a mixed diffusion pattern model. Knowl.-Based Syst. 147, 81–93 (2018)

    Article  Google Scholar 

  26. Sela, A., Goldenberg, D., Ben-Gal, I., Shmueli, E.: Active viral marketing: incorporating continuous active seeding efforts into the diffusion model. Expert Syst. Appl. 107, 45–60 (2018)

    Article  Google Scholar 

  27. Hosseini-Pozveh, M., Zamanifar, K., Naghsh-Nilchi, A.R.: Assessing information diffusion models for influence maximization in signed social networks. Expert Syst. Appl. 119, 476–490 (2019)

    Article  Google Scholar 

  28. Molaei, S., Zare, H., Veisi, H.: Deep learning approach on information diffusion in heterogeneous networks. Knowl.-Based Syst. 189, 105153 (2020)

    Article  Google Scholar 

  29. Han, Y., Lappas, T., Sabnis, G.: The importance of interactions between content characteristics and creator characteristics for studying virality in social media. Inf. Syst. Res. 31(2), 576–588 (2020)

    Article  Google Scholar 

  30. Probst, F., Grosswiele, L., Pfleger, R.: Who will lead and who will follow: identifying influential users in online social networks: a critical review and future research directions. Wirtschaftsinformatik 55, 175–192 (2013)

    Article  Google Scholar 

  31. Wang, Z., Liu, H., Liu, W., Wang, S.: Understanding the power of opinion leaders’ influence on the diffusion process of popular mobile games: travel frog on Sina Weibo. Comput. Hum. Behav. 109, 106354 (2020)

    Article  Google Scholar 

  32. Mirbabaie, M., Bunker, D., Stieglitz, S., Marx, J., Ehnis, C.: Social media in times of crisis: learning from hurricane Harvey for the coronavirus disease 2019 pandemic response. J. Inf. Technol. 35(3), 195–213 (2020)

    Article  Google Scholar 

  33. Stieglitz, S., Dang-Xuan, L.: Emotions and information diffusion in social media-sentiment of microblogs and sharing behavior. J. Manag. Inf. Syst. 29(4), 217–248 (2013)

    Article  Google Scholar 

  34. Kane, G.C., Alavi, M., Labianca, G., Borgatti, S.P.: What’s different about social media networks? A framework and research agenda. MIS Q. 38(1), 275–304 (2014)

    Article  Google Scholar 

  35. Krijestorac, H., Garg, R., Mahajan, V.: Cross-platform spillover effects in consumption of viral content: a quasi-experimental analysis using synthetic controls. Inf. Syst. Res. 31(2), 449–472 (2020)

    Article  Google Scholar 

  36. Myers, S.A., Zhu, C., Leskovec, J.: Information diffusion and external influence in networks. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 33–41 (2012)

    Google Scholar 

  37. Mathes, R., Pfetsch, B.: The role of the alternative press in the agenda-building process: spill-over effects and media opinion leadership. Eur. J. Commun. 6(1), 33–62 (1991)

    Article  Google Scholar 

  38. Pfetsch, B., Adam, S., Lance Bennett, W.: The critical linkage between online and offline media: an approach to researching the conditions of issue spill-over. Javnost-Publ. 20(3), 9–22 (2013)

    Article  Google Scholar 

  39. Shahi, G.K., Nandini, D.: Fakecovid–a multilingual cross-domain fact check news dataset for COVID-19 (2020). https://workshop-proceedings.icwsm.org/abstract.php?id=2020_14

  40. Stahl, B.C.: Morality, ethics, and reflection: a categorization of normative is research. J. Assoc. Inf. Syst. 13(8), 1 (2012)

    Google Scholar 

  41. Kekes, J.: Moral intuition. Am. Philos. Q. 23(1), 83–93 (1986)

    Google Scholar 

  42. Starbird, K.: Facts, frames, and (mis)interpretations: understanding rumors as collective sensemaking. https://www.cip.uw.edu/2023/12/06/rumors-collective-sensemaking-kate-starbird/. Accessed 11 July 2024

  43. Alkiviadou, N.: Hate speech on social media networks: towards a regulatory framework? Inf. Commun. Technol. Law 28(1), 19–35 (2019)

    Article  Google Scholar 

  44. Lim, H., Fussell, S.R.: Making sense of foreign language posts in social media. Proc. ACM Hum.-Comput. Interact. 1(CSCW), 1–16 (2017)

    Google Scholar 

Download references

Acknowledgements

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 823866.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gautam Kishore Shahi .

Editor information

Editors and Affiliations

8 Appendix

8 Appendix

Appendix

Table 1. Summary of the original codebook and the described frame cues by Boydstun et al. [13] and the case specific additions to the codebook including keywords and phrases
Table 2. Overview about the online news media part of the online news media data set classified by ownership, affiliation and additional notes regarding the scope of the medium
Table 3. Usage of primary frames and secondary frames in online news sources, tweets, YouTube videos, and YouTube comments. Total numbers in the URL analysis might differ, due to more than one URL per tweet, post or article.
Table 4. Cohen’s Kappa Coefficient per medium and its interpretation

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jung, AK., Shahi, G.K., Fromm, J., Røysland, K.A., Gronert, K.H. (2024). Multi-platform Framing Analysis: A Case Study of Kristiansand Quran Burning. In: Preuss, M., Leszkiewicz, A., Boucher, JC., Fridman, O., Stampe, L. (eds) Disinformation in Open Online Media. MISDOOM 2024. Lecture Notes in Computer Science, vol 15175. Springer, Cham. https://doi.org/10.1007/978-3-031-71210-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71210-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71209-8

  • Online ISBN: 978-3-031-71210-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics