Crowdsourcing Statement Classification to Enhance Information Quality Prediction | SpringerLink
Skip to main content

Crowdsourcing Statement Classification to Enhance Information Quality Prediction

  • Conference paper
  • First Online:
Disinformation in Open Online Media (MISDOOM 2024)

Abstract

This paper explores the use of crowdsourcing to classify statement types in film reviews to assess their information quality. Employing the Argument Type Identification Procedure which uses the Periodic Table of Arguments to categorize arguments, the study aims to connect statement types to the overall argument strength and information reliability. Focusing on non-expert annotators in a crowdsourcing environment, the research assesses their reliability based on various factors including language proficiency and annotation experience. Results indicate the importance of careful annotator selection and training to achieve high inter-annotator agreement and highlight challenges in crowdsourcing statement classification for information quality assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 4346
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 5433
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See, for instance, www.rottentomatoes.com/m/split_2017.

References

  1. Addawood, A., Bashir, M.: “What is your evidence?” A study of controversial topics on social media. In: ArgMining2016, pp. 1–11. ACL, August 2016

    Google Scholar 

  2. Bosc, T., Cabrio, E., Villata, S.: DART: a dataset of arguments and their relations on Twitter. In: LREC, pp. 1258–1263. ACL (2016)

    Google Scholar 

  3. Ceolin, D., Primiero, G., Soprano, M., Wielemaker, J.: Transparent assessment of information quality of online reviews using formal argumentation theory. Inf. Syst. 110, 102107 (2022)

    Google Scholar 

  4. Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Measur. 20, 37–46 (1960)

    Article  Google Scholar 

  5. Dancey, C.P., Reidy, J.: Statistics Without Maths for Psychology: Using SPSS for Windows. Prentice-Hall Inc., USA (2004)

    Google Scholar 

  6. Feier, A.: Reach consensus faster by using IAA charts in the annotation lab. https://www.johnsnowlabs.com/reach-consensus-faster-by-using-iaa-charts-in-the-annotation-lab/. Accessed 03 Apr 2023

  7. Fleiss, J.L.: Measuring nominal scale agreement among many raters. Psychol. Bull. 76, 378–382 (1971)

    Article  Google Scholar 

  8. Goudas, T., Louizos, C., Petasis, G., Karkaletsis, V.: Argument extraction from news, blogs, and social media. In: Likas, A., Blekas, K., Kalles, D. (eds.) SETN 2014. LNCS (LNAI), vol. 8445, pp. 287–299. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07064-3_23

    Chapter  Google Scholar 

  9. Hripcsak, G., Rothschild, A.S.: Agreement, the F-measure, and reliability in information retrieval. J. Am. Med. Inf. Ass. 12, 296–298 (2005)

    Google Scholar 

  10. Iskender, N., Schaefer, R., Polzehl, T., Möller, S.: Argument mining in tweets: comparing crowd and expert annotations for automated claim and evidence detection. In: Métais, E., Meziane, F., Horacek, H., Kapetanios, E. (eds.) NLDB 2021. LNCS, vol. 12801, pp. 275–288. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80599-9_25

    Chapter  Google Scholar 

  11. Jiang, Y., Zhu, H., Kummerfeld, J.K., Li, Y., Lasecki, W.: A novel workflow for accurately and efficiently crowdsourcing predicate senses and argument labels. In: EMNLP, pp. 415–421. ACL, November 2020

    Google Scholar 

  12. Lawrence, J., Reed, C.: Argument mining: a survey. Comput. Linguist. 45(4), 765–818 (2019)

    Article  Google Scholar 

  13. Lee, G.E., Sun, A.: A study on agreement in PICO span annotations. In: Proceedings of the 42nd International ACM SIGIR Conference, pp. 1149–1152. ACM (2019)

    Google Scholar 

  14. Li, M., Geng, S., Gao, Y., Peng, S., Liu, H., Wang, H.: Crowdsourcing argumentation structures in Chinese hotel reviews. In: SMC, pp. 87–92. IEEE (2017)

    Google Scholar 

  15. Lindahl, A.: Annotating argumentation in Swedish social media. In: ArgMining Workshop, pp. 100–105. ACL, December 2020

    Google Scholar 

  16. McHugh, M.L.: Interrater reliability: the kappa statistic. Biochemia Medica 22, 276–282 (2012)

    Article  Google Scholar 

  17. Miller, T., Sukhareva, M., Gurevych, I.: A streamlined method for sourcing discourse-level argumentation annotations from the crowd. In: NAACL, pp. 1790–1796. ACL, June 2019

    Google Scholar 

  18. Nordquist, R.: Definition and examples of vagueness in language. https://www.thoughtco.com/vagueness-language-1692483. Accessed 25 Sept 2023

  19. Plug, H., Wagemans, J.: Argument-checken als een methode voor het identificeren van desinformatie. In: Proceedings of VIOT2024. University of Twente (2024)

    Google Scholar 

  20. Ratner, B.: The correlation coefficient: Its values range between +1/-1 or do they? J. Targ. Measur. Anal. Market. 17(2), 139–142 (2009)

    Google Scholar 

  21. Schaefer, R., Stede, M.: Annotation and detection of arguments in tweets. In: Proceedings of the 7th Workshop on Argument Mining, pp. 53–58. ACL, December 2020

    Google Scholar 

  22. Schober, P., Boer, C., Schwarte, L.A.: Correlation coefficients: appropriate use and interpretation. Anesth. Analg. 126(5) (2018)

    Google Scholar 

  23. Scott, W.A.: Reliability of content analysis: the case of nominal scale coding. Public Opin. Q. 19(3), 321–325 (1955)

    Article  Google Scholar 

  24. Soprano, M., Roitero, K., Bombassei De Bona, F., Mizzaro, S.: Crowd_frame: a simple and complete framework to deploy complex crowdsourcing tasks off-the-shelf. In: WSDM 2022, pp. 1605–1608. ACM (2022)

    Google Scholar 

  25. Soprano, M., et al.: The many dimensions of truthfulness: crowdsourcing misinformation assessments on a multidimensional scale. IP &M 58(6), 102710 (2021)

    Google Scholar 

  26. Wagemans, J.: Constructing a periodic table of arguments. In: Argumentation, Objectivity, and Bias: Proceedings of the 11th International Conference of the OSSA, pp. 1–12, May 2016

    Google Scholar 

  27. Wagemans, J.H.M.: Argument Type Identification Procedure (ATIP) - Version 4. https://periodic-table-of-arguments.org/argument-type-identification-procedure. Accessed 21 Mar 2022

  28. World Health Organization: Infodemic. https://www.who.int/health-topics/infodemic/understanding-the-infodemic-and-misinformation-in-the-fight-against-covid-19. Accessed 29 Apr 2024

Download references

Acknowledgements

This research is supported by the Netherlands eScience Center project “The Eye of the Beholder” (project nr. 027.020.G15), and it is part of the AI, Media & Democracy Lab (Dutch Research Council project number: NWA.1332.20.009). For more information about the lab and its further activities, visit https://www.aim4dem.nl/.

This research is also supported by the European Union’s NextGenerationEU PNRR M4.C2.1.1 – PRIN 2022 project “20227F2ZN3 MoT–The Measure of Truth: An Evaluation-Centered Machine-Human Hybrid Framework for Assessing Information Truthfulness” (20227F2ZN3_001, CUP G53D23002800006), and by the Strategic Plan of the University of Udine–Interdepartmental Project on Artificial Intelligence (2020–2025).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davide Ceolin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, J., Soprano, M., Roitero, K., Ceolin, D. (2024). Crowdsourcing Statement Classification to Enhance Information Quality Prediction. In: Preuss, M., Leszkiewicz, A., Boucher, JC., Fridman, O., Stampe, L. (eds) Disinformation in Open Online Media. MISDOOM 2024. Lecture Notes in Computer Science, vol 15175. Springer, Cham. https://doi.org/10.1007/978-3-031-71210-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71210-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71209-8

  • Online ISBN: 978-3-031-71210-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics