LENs for Analyzing the Quality of Life of People with Intellectual Disability | SpringerLink
Skip to main content

LENs for Analyzing the Quality of Life of People with Intellectual Disability

  • Conference paper
  • First Online:
Neural-Symbolic Learning and Reasoning (NeSy 2024)

Abstract

This paper presents a reduced version of a currently in-use questionnaire, the GENCAT scale, to determine the level of quality of life of people with intellectual disability and uses a framework in the literature of neurosymbolic AI, specifically the family of interpretable DL named logic explained networks, to provide explanations for the predictions. By integrating explainability, our research enhances the richness of the predictions and qualitatively evaluates the reduced questionnaire’s effectiveness, also illustrating the importance of explainable AI in improving assessment tools for vulnerable populations such as people with disability. The work is understood as a step to initiate dialogue with experts and practitioners using the GENCAT scale, with the ultimate goal of refining the questionnaire by discussing the explanations generated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14871
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 18589
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    See https://github.com/dfp97/LENsQoLIntDisability\(\_\)ReducedGencat.

  2. 2.

    See https://github.com/dfp97/LENsQoLIntDisability\(\_\)ReducedGencat.

References

  1. Armengol, E., Dellunde, P., Ratto, C.: Lazy learning methods for quality of life assessment in people with intellectual disabilities. In: Fernández, C., Geffner, H., Manyà, F. (eds.) Artificial Intelligence Research and Development - Proceedings of the 14th International Conference of the Catalan Association for Artificial Intelligence, Lleida, 26–28 October 2011. Frontiers in Artificial Intelligence and Applications, vol. 232, pp. 41–50. IOS Press (2011). https://doi.org/10.3233/978-1-60750-842-7-41

  2. Armengol, E., García-Cerdaña, À., Dellunde, P.: Experiences using decision trees for knowledge discovery. In: Torra, V., Dahlbom, A., Narukawa, Y. (eds.) Fuzzy Sets, Rough Sets, Multisets and Clustering. Studies in Computational Intelligence, vol. 671, pp. 169–191. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47557-8_11

  3. Barbiero, P., Ciravegna, G., Giannini, F., Lió, P., Gori, M., Melacci, S.: Entropy-based logic explanations of neural networks. In: Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event, 22 February–1 March 2022, pp. 6046–6054. AAAI Press (2022). https://doi.org/10.1609/AAAI.V36I6.20551

  4. Bißantz, S., Frick, S., Melinscak, F., Iliescu, D., Wetzel, E.: The potential of machine learning methods in psychological assessment and test construction. Eur. J. Psychol. Assess. 40(1), 1–4 (2024). https://doi.org/10.1027/1015-5759/a000817

    Article  Google Scholar 

  5. Ciravegna, G., et al.: Logic explained networks. Artif. Intell. 314, 103822 (2023). https://doi.org/10.1016/J.ARTINT.2022.103822

  6. Costa, V., Dellunde, P.: Towards an implementation of merging operators in many-valued logics. In: Cortés, A., Grimaldo, F., Flaminio, T. (eds.) Artificial Intelligence Research and Development - Proceedings of the 24th International Conference of the Catalan Association for Artificial Intelligence, CCIA 2022, Sitges, 19–21 October 2022. Frontiers in Artificial Intelligence and Applications, vol. 356, pp. 7–8. IOS Press (2022). https://doi.org/10.3233/FAIA220306

  7. Falomir, Z., Costa, V.: On the rationality of explanations in classification algorithms. In: Villaret, M., Alsinet, T., Fernández, C., Valls, A. (eds.) Artificial Intelligence Research and Development - Proceedings of the 23rd International Conference of the Catalan Association for Artificial Intelligence, CCIA 2021, Virtual Event, 20–22 October 2021. Frontiers in Artificial Intelligence and Applications, vol. 339, pp. 445–454. IOS Press (2021). https://doi.org/10.3233/FAIA210165

  8. d’Avila Garcez, A., Lamb, L.C.: Neurosymbolic AI: the 3rd wave. Artif. Intell. Rev. 56(11), 12387–12406 (2023). https://doi.org/10.1007/S10462-023-10448-W

    Article  Google Scholar 

  9. Gómez, L.E., Monsalve, A., Morán, M.L., Alcedo, M.A., Lombardi, M., Schalock, R.L.: Measurable indicators of CRPD for people with intellectual and developmental disabilities within the quality of life framework. Int. J. Environ. Res. Publ. Health 17(14), 5123 (2020). https://doi.org/10.3390/ijerph17145123

  10. Mirzaei, S., Mao, H., Al-Nima, R.R.O., Woo, W.L.: Explainable AI evaluation: a top-down approach for selecting optimal explanations for black box models. Information 15(1), 4 (2024). https://doi.org/10.3390/info15010004

  11. Schalock, R., Verdugo, M.: Handbook of Quality of Life for Human Service Practitioners. American Association on Mental Retardation (2002)

    Google Scholar 

  12. Verdugo, M.A., Navas, P., Gómez, L.E., Schalock, R.L.: The concept of quality of life and its role in enhancing human rights in the field of intellectual disability. J. Intellect. Disabil. Res. 56(11), 1036–1045 (2012). https://doi.org/10.1111/j.1365-2788.2012.01585.x

    Article  Google Scholar 

  13. Verdugo, M., Arias, B., Gómez, L., Schalock, R.: Informe sobre la creació d’una escala multidimensional per avaluar la qualitat de vida de les persones usuà ries dels serveis socials a catalunya. Tech. rep., Departament d’Acció Social i Ciutadania, Generalitat de Catalunya (2008)

    Google Scholar 

  14. Verdugo, M., Gómez, L., Arias, B., Schalock, R.: Formulari de l’escala gencat de qualitat de vida. Manual d’aplicació de l’escala gencat de qualitat de vida. Tech. rep., Departament d’Acció Social i Ciutadania, Generalitat de Catalunya (2008)

    Google Scholar 

  15. Yadav, G.K., et al.: Predicting personalized quality of life of an intellectually disabled person utilizing machine learning. In: Cortés, A., Grimaldo, F., Flaminio, T. (eds.) Artificial Intelligence Research and Development - Proceedings of the 24th International Conference of the Catalan Association for Artificial Intelligence, CCIA 2022, Sitges, 19–21 October 2022. Frontiers in Artificial Intelligence and Applications, vol. 356, pp. 139–142. IOS Press (2022). https://doi.org/10.3233/FAIA220327

  16. Zhukov, A., Benois-Pineau, J., Giot, R.: Evaluation of explanation methods of AI - CNNs in image classification tasks with reference-based and no-reference metrics. Adv. Artif. Intell. Mach. Learn. 3(1), 620–646 (2023). https://doi.org/10.54364/AAIML.2023.1143

Download references

Acknowledgement

This work was funded by the projects PID2022-139835NB-C21, H2020-MSCA-RISE-910 2020 MOSAIC, and PID2022-141950OB-I00, the groups 2021-SGR-00754 and 2021-SGR-00517, and the introduction to research training programme JAE Intro ICU 2023 (AIHUB-22, JAEICU_23_00654). We would like to thank the reviewers for their thoughtful comments, which enhanced the manuscript and will serve to improve our future research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicent Costa .

Editor information

Editors and Affiliations

5 Appendix

5 Appendix

Table 2. RCCI for different versions of the GENCAT scale
Table 3. Accuracy metrics obtained when testing on IntDisCat database the different versions of the GENCAT scale
Table 4. Explanation metrics of the global explanations obtained from IntDisCat database using the GENCAT scale and the 23 GENCAT scale
Fig. 1.
figure 1

The output of the computation for obtaining all the data of the social service users from the IntDisCat database, i.e., the standard values of the eight QOL dimensions and the QOL levels with its qualitative evaluation

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fraile-Parra, D., Costa, V., Dellunde, P. (2024). LENs for Analyzing the Quality of Life of People with Intellectual Disability. In: Besold, T.R., d’Avila Garcez, A., Jimenez-Ruiz, E., Confalonieri, R., Madhyastha, P., Wagner, B. (eds) Neural-Symbolic Learning and Reasoning. NeSy 2024. Lecture Notes in Computer Science(), vol 14980. Springer, Cham. https://doi.org/10.1007/978-3-031-71170-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71170-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71169-5

  • Online ISBN: 978-3-031-71170-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics