Abstract
This paper presents a reduced version of a currently in-use questionnaire, the GENCAT scale, to determine the level of quality of life of people with intellectual disability and uses a framework in the literature of neurosymbolic AI, specifically the family of interpretable DL named logic explained networks, to provide explanations for the predictions. By integrating explainability, our research enhances the richness of the predictions and qualitatively evaluates the reduced questionnaire’s effectiveness, also illustrating the importance of explainable AI in improving assessment tools for vulnerable populations such as people with disability. The work is understood as a step to initiate dialogue with experts and practitioners using the GENCAT scale, with the ultimate goal of refining the questionnaire by discussing the explanations generated.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Armengol, E., Dellunde, P., Ratto, C.: Lazy learning methods for quality of life assessment in people with intellectual disabilities. In: Fernández, C., Geffner, H., Manyà, F. (eds.) Artificial Intelligence Research and Development - Proceedings of the 14th International Conference of the Catalan Association for Artificial Intelligence, Lleida, 26–28 October 2011. Frontiers in Artificial Intelligence and Applications, vol. 232, pp. 41–50. IOS Press (2011). https://doi.org/10.3233/978-1-60750-842-7-41
Armengol, E., García-Cerdaña, À., Dellunde, P.: Experiences using decision trees for knowledge discovery. In: Torra, V., Dahlbom, A., Narukawa, Y. (eds.) Fuzzy Sets, Rough Sets, Multisets and Clustering. Studies in Computational Intelligence, vol. 671, pp. 169–191. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47557-8_11
Barbiero, P., Ciravegna, G., Giannini, F., Lió, P., Gori, M., Melacci, S.: Entropy-based logic explanations of neural networks. In: Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Conference on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual Event, 22 February–1 March 2022, pp. 6046–6054. AAAI Press (2022). https://doi.org/10.1609/AAAI.V36I6.20551
Bißantz, S., Frick, S., Melinscak, F., Iliescu, D., Wetzel, E.: The potential of machine learning methods in psychological assessment and test construction. Eur. J. Psychol. Assess. 40(1), 1–4 (2024). https://doi.org/10.1027/1015-5759/a000817
Ciravegna, G., et al.: Logic explained networks. Artif. Intell. 314, 103822 (2023). https://doi.org/10.1016/J.ARTINT.2022.103822
Costa, V., Dellunde, P.: Towards an implementation of merging operators in many-valued logics. In: Cortés, A., Grimaldo, F., Flaminio, T. (eds.) Artificial Intelligence Research and Development - Proceedings of the 24th International Conference of the Catalan Association for Artificial Intelligence, CCIA 2022, Sitges, 19–21 October 2022. Frontiers in Artificial Intelligence and Applications, vol. 356, pp. 7–8. IOS Press (2022). https://doi.org/10.3233/FAIA220306
Falomir, Z., Costa, V.: On the rationality of explanations in classification algorithms. In: Villaret, M., Alsinet, T., Fernández, C., Valls, A. (eds.) Artificial Intelligence Research and Development - Proceedings of the 23rd International Conference of the Catalan Association for Artificial Intelligence, CCIA 2021, Virtual Event, 20–22 October 2021. Frontiers in Artificial Intelligence and Applications, vol. 339, pp. 445–454. IOS Press (2021). https://doi.org/10.3233/FAIA210165
d’Avila Garcez, A., Lamb, L.C.: Neurosymbolic AI: the 3rd wave. Artif. Intell. Rev. 56(11), 12387–12406 (2023). https://doi.org/10.1007/S10462-023-10448-W
Gómez, L.E., Monsalve, A., Morán, M.L., Alcedo, M.A., Lombardi, M., Schalock, R.L.: Measurable indicators of CRPD for people with intellectual and developmental disabilities within the quality of life framework. Int. J. Environ. Res. Publ. Health 17(14), 5123 (2020). https://doi.org/10.3390/ijerph17145123
Mirzaei, S., Mao, H., Al-Nima, R.R.O., Woo, W.L.: Explainable AI evaluation: a top-down approach for selecting optimal explanations for black box models. Information 15(1), 4 (2024). https://doi.org/10.3390/info15010004
Schalock, R., Verdugo, M.: Handbook of Quality of Life for Human Service Practitioners. American Association on Mental Retardation (2002)
Verdugo, M.A., Navas, P., Gómez, L.E., Schalock, R.L.: The concept of quality of life and its role in enhancing human rights in the field of intellectual disability. J. Intellect. Disabil. Res. 56(11), 1036–1045 (2012). https://doi.org/10.1111/j.1365-2788.2012.01585.x
Verdugo, M., Arias, B., Gómez, L., Schalock, R.: Informe sobre la creació d’una escala multidimensional per avaluar la qualitat de vida de les persones usuà ries dels serveis socials a catalunya. Tech. rep., Departament d’Acció Social i Ciutadania, Generalitat de Catalunya (2008)
Verdugo, M., Gómez, L., Arias, B., Schalock, R.: Formulari de l’escala gencat de qualitat de vida. Manual d’aplicació de l’escala gencat de qualitat de vida. Tech. rep., Departament d’Acció Social i Ciutadania, Generalitat de Catalunya (2008)
Yadav, G.K., et al.: Predicting personalized quality of life of an intellectually disabled person utilizing machine learning. In: Cortés, A., Grimaldo, F., Flaminio, T. (eds.) Artificial Intelligence Research and Development - Proceedings of the 24th International Conference of the Catalan Association for Artificial Intelligence, CCIA 2022, Sitges, 19–21 October 2022. Frontiers in Artificial Intelligence and Applications, vol. 356, pp. 139–142. IOS Press (2022). https://doi.org/10.3233/FAIA220327
Zhukov, A., Benois-Pineau, J., Giot, R.: Evaluation of explanation methods of AI - CNNs in image classification tasks with reference-based and no-reference metrics. Adv. Artif. Intell. Mach. Learn. 3(1), 620–646 (2023). https://doi.org/10.54364/AAIML.2023.1143
Acknowledgement
This work was funded by the projects PID2022-139835NB-C21, H2020-MSCA-RISE-910 2020 MOSAIC, and PID2022-141950OB-I00, the groups 2021-SGR-00754 and 2021-SGR-00517, and the introduction to research training programme JAE Intro ICU 2023 (AIHUB-22, JAEICU_23_00654). We would like to thank the reviewers for their thoughtful comments, which enhanced the manuscript and will serve to improve our future research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
5 Appendix
5 Appendix
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Fraile-Parra, D., Costa, V., Dellunde, P. (2024). LENs for Analyzing the Quality of Life of People with Intellectual Disability. In: Besold, T.R., d’Avila Garcez, A., Jimenez-Ruiz, E., Confalonieri, R., Madhyastha, P., Wagner, B. (eds) Neural-Symbolic Learning and Reasoning. NeSy 2024. Lecture Notes in Computer Science(), vol 14980. Springer, Cham. https://doi.org/10.1007/978-3-031-71170-1_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-71170-1_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-71169-5
Online ISBN: 978-3-031-71170-1
eBook Packages: Computer ScienceComputer Science (R0)