Towards Explaining the Spectrogram of Graph Spectral Clustering in Text Document Domain | SpringerLink
Skip to main content

Towards Explaining the Spectrogram of Graph Spectral Clustering in Text Document Domain

  • Conference paper
  • First Online:
Computer Information Systems and Industrial Management (CISIM 2024)

Abstract

In previous research, the authors found that the spectrogram of eigenvalues of combinatorial Laplacian of the document similarity matrix is relevant for tasks like graph spectral classification, clustering etc.. This paper investigates the hypothesis that this property can be attributed to the specific “style” of writing, that is to the distribution of words in the documents belonging to a given category of documents. The investigation is performed via generating artificial documents from a predefined parameterized word distribution. The document similarity matrices are computed and the spectrum of the corresponding combinatorial Laplacian is interrogated. The parameters are varied to determine their impact. We present the impact of these parameters on the shape of the spectrogram.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8465
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baayen, R.H.: Statistical models for word frequency distributions: a linguistic evaluation. Comput. Humanit. 26(5-6), 347–363 (1992). https://doi.org/10.1007/BF00136980

  2. Bandyapadhyay, S., Fomin, F.V., Golovach, P.A., Lochet, W., Purohit, N., Simonov, K.: How to find a good explanation for clustering? (2021). https://doi.org/10.48550/ARXIV.2112.06580. https://arxiv.org/abs/2112.06580

  3. Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020)

    Google Scholar 

  4. Bobek, S., Kuk, M., Szela̧ż, M., Nalepa, G.: Enhancing cluster analysis with explainable AI and multidimensional cluster prototypes. IEEE Access 10, 101556–101574 (2022)

    Google Scholar 

  5. Borkowski, P., Kłopotek, M., Starosta, B., Wierzchoń, S., Sydow, M.: Eigenvalue based spectral classification. PLOS ONE 18(4), e0283413 (2023). https://doi.org/10.1371/journal.pone.0283413

  6. Carroll, J.: On sampling from a lognormal model of word frequency distribution. In: Kurera, H., Francis, W. (eds.) Computational Analysis of Present-Day American English, pp. 406–424. Brown University Press, Providence (1967)

    Google Scholar 

  7. Chaudhuri, K., Chung, F., Tsiatas, A.: Spectral clustering of graphs with general degrees in the extended planted partition model. In: Mannor, S., Srebro, N., Williamson, R.C. (eds.) Proceedings of the 25th Annual Conference on Learning Theory. Proceedings of Machine Learning Research, Edinburgh, Scotland, vol. 23, pp. 35.1–35.23. PMLR (2012). https://proceedings.mlr.press/v23/chaudhuri12.html

  8. Davidson, I., Livanos, M., Gourru, A., Walker, P., Velcin, J., Ravi, S.S.: Explainable clustering via exemplars: Complexity and efficient approximation algorithms. CoRR 2209.09670 (2022)

    Google Scholar 

  9. Kauffmann, J.R., Esders, M., Montavon, G., Samek, W., Müller, K.: From clustering to cluster explanations via neural networks. CoRR abs/1906.07633 (2019). http://arxiv.org/abs/1906.07633

  10. Kłopotek, M., Wierzchon, S.T., Starosta, B., Czerski, D., Borkowski, P.: Dependence of spectrogram from graph spectral clustering in text document domain; under preparation (2024)

    Google Scholar 

  11. Kłopotek, M.A., Starosta, B., Wierzchoń, S.T.: Eigenvalue-based incremental spectral clustering (2023)

    Google Scholar 

  12. von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  13. Luxburg, U.V.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007). https://doi.org/10.1007/s11222-007-9033-z

  14. Macgregor, P., Sun, H.: A tighter analysis of spectral clustering, and beyond. In: Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., Sabato, S. (eds.) Proceedings of the 39th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 162, pp. 14717–14742. PMLR (2022). https://proceedings.mlr.press/v162/macgregor22a.html

  15. Mandelbrot, B.: An informational theory of the statistical structure of languages. In: Jackson, W. (ed.) Communication Theory, pp. 486–502. Academic Press, Princeton (1953)

    Google Scholar 

  16. Orlov, J., Chitashvili, R.: On the distribution of frequency spectrum in small samples from populations with a large number of events. Bull. Acad. Sci. Georgia 108(2), 297–300 (1982)

    MathSciNet  Google Scholar 

  17. Penta, A., Pal, A.: What is this cluster about? explaining textual clusters by extracting relevant keywords. Knowl.-Based Syst. 229, 107342 (2021). https://doi.org/10.1016/j.knosys.2021.107342

    Article  Google Scholar 

  18. Sichel, H.: On a distribution law for word frequencies. J. Am. Stat. Assoc. 70, 542–547 (1975)

    Google Scholar 

  19. Starosta, B., Kłopotek, M., Wierzchoń, S.: Hashtag similarity based on laplacian eigenvalue spectrum. In: Proceedings of PP-RAI 2023 - 4th Polish Conference on Artificial Intelligence, Progress in Polish Artificial Intelligence Research 4, Łódź, Poland 2023 (2023)

    Google Scholar 

  20. Wierzchoń, S., Kłopotek, M.: Modern Clustering Algorithms. Studies in Big Data, vol. 34. Springer, Heidelberg (2018). https://doi.org/10.1007/978-3-319-69308-8

  21. Xu, Y., Srinivasan, A., Xue, L.: A selective overview of recent advances in spectral clustering and their applications. In: Zhao, Y., Chen, D.D.-G. (eds.) Modern Statistical Methods for Health Research. ETSB, pp. 247–277. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72437-5_12

    Chapter  Google Scholar 

  22. Zhao, Y., Liang, S., Ren, Z., Ma, J., Yilmaz, E., de Rijke, M.: Explainable user clustering in short text streams. In: Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2016, pp. 155–164. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2911451.2911522

  23. Zipf, G.: Selective Studies and the Principle of Relative Frequency in Language. Harvard University Press, Cambridge (1932)

    Book  Google Scholar 

Download references

Acknowledgments

This study was funded by Polish Ministry of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mieczysław A. Kłopotek .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kłopotek, M.A., Wierzchoń, S.T., Starosta, B., Czerski, D., Borkowski, P. (2024). Towards Explaining the Spectrogram of Graph Spectral Clustering in Text Document Domain. In: Saeed, K., Dvorský, J. (eds) Computer Information Systems and Industrial Management. CISIM 2024. Lecture Notes in Computer Science, vol 14902. Springer, Cham. https://doi.org/10.1007/978-3-031-71115-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-71115-2_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-71114-5

  • Online ISBN: 978-3-031-71115-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics