TabGAN-Powered Data Augmentation and Explainable Boosting-Based Ensemble Learning for Intrusion Detection in Industrial Control Systems | SpringerLink
Skip to main content

TabGAN-Powered Data Augmentation and Explainable Boosting-Based Ensemble Learning for Intrusion Detection in Industrial Control Systems

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2024)

Abstract

In the era of Industry 4.0, the Industrial Control System (ICS) plays a crucial role, making the detection of cyber attacks on it both vital and challenging. This study presents TDAELID, a method designed to improve cyber assault detection on the widely used IEC 60870-5-104 protocol in ICS. TDAELID employs TabGAN to generate realistic samples from minority classes and a clustering approach to select representative samples from majority classes, enhancing the quality of the training set. Furthermore, it utilizes a weighted ensemble of multiple AI models concurrently to enhance intrusion detection effectiveness. Evaluation on the IEC 60870-5-104 Intrusion Detection Dataset demonstrates TDAELID’s superiority over state-of-the-art methods, achieving an 85.44% detection accuracy and an 84.88% F1 score, surpassing SOTA methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 9437
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Radoglou-Grammatikis, P., et al.: Modeling, detecting, and mitigating threats against industrial healthcare systems: a combined software defined networking and reinforcement learning approach. IEEE Trans. Industr. Inf. 18(3), 2041–2052 (2022)

    Article  Google Scholar 

  2. Aldweesh, A., Derhab, A., and Emam, A.Z.: Deep learning approaches for anomaly-based intrusion detection systems: a survey, taxonomy, and open issues. Know.-Based Syst. 189 (2020)

    Google Scholar 

  3. Liu, H., Lang, B.: Machine learning and deep learning methods for intrusion detection systems: a survey. Appli. Sci. 9(20) (2019)

    Google Scholar 

  4. Vo, H.V., Du, H.P., Nguyen, H.N.: Ai-powered intrusion detection in large-scale traffic networks based on flow sensing strategy and parallel deep analysis. J. Netw. Comput. Appl. 220, 103735 (2023)

    Article  Google Scholar 

  5. Qin-cui, F., Zi-ying, L., Ke-jia, F.: Implementation of iec60870-5-104 protocol based on finite state machines. In: 2009 International Conference on Sustainable Power Generation and Supply, pp. 1–5, (2009)

    Google Scholar 

  6. Ikram, S.T., et al.: Anomaly detection using xgboost ensemble of deep neural network models. Cybern. Inf. Technol. 21, 175–188 (2021)

    Google Scholar 

  7. Mishra, P., Varadharajan, V., Tupakula, U., Pilli, E.S.: A detailed investigation and analysis of using machine learning techniques for intrusion detection. IEEE Commun. Surv. Tutorials 21(1), 686–728 (2019)

    Article  Google Scholar 

  8. Ferrag, M.A., Maglaras, L., Moschoyiannis, S., Janicke, H.: Deep learning for cyber security intrusion detection: approaches, datasets, and comparative study. J. Inform. Sec. Appli. 50, 12 (2019)

    Google Scholar 

  9. Bontemps, L., Cao, V.L., Mcdermott, J., Le-Khac, N.-A.: Collective anomaly detection based on long short-term memory recurrent neural networks, pp. 141–152 (Nov 2016)

    Google Scholar 

  10. Li, Y., Qin, T., Huang, Y., Lan, J., Liang, Z., Geng, T.: Hdfef: a hierarchical and dynamic feature extraction framework for intrusion detection systems. Comput. Sec. 121, 102842 (2022)

    Article  Google Scholar 

  11. Aldarwbi, M., Habibi Lashkari, A., Ghorbani, A.: The sound of intrusion: a novel network intrusion detection system. Comput. Electr. Eng. 104, 10 (2022)

    Google Scholar 

  12. Omer, N., Samak, A.H., Taloba, A.I., Abd El-Aziz, R.M.: A novel optimized probabilistic neural network approach for intrusion detection and categorization’. Alexandria Eng. J. 72, 351–361 (2023)

    Article  Google Scholar 

  13. Ghanbarzadeh, R., Hosseinalipour, A., Ghaffari, A.: A novel network intrusion detection method based on metaheuristic optimisation algorithms. J. Ambient Intell. Humanized Comput., 1–18 (2023)

    Google Scholar 

  14. Al, S., Dener, M.: Stl-hdl: a new hybrid network intrusion detection system for imbalanced dataset on big data environment. Comput. Sec. 110, 102435 (2021)

    Article  Google Scholar 

  15. Radoglou-Grammatikis, P., Sarigiannidis, P., Giannoulakis, I., Kafetzakis, E., Panaousis, E.: Attacking iec-60870-5-104 scada systems. In: 2019 IEEE World Congress on Services (SERVICES), vol. 2642-939X, pp. 41–46 (2019)

    Google Scholar 

  16. Asimopoulos, D., et al.: Breaching the defense: Investigating fgsm and ctgan adversarial attacks on iec 60870-5-104 ai-enabled intrusion detection systems,’ pp. 1–8 (Oct 2023)

    Google Scholar 

  17. Vo, H.V., Du, H.P., Nguyen, H.N.: Apelid: enhancing real-time intrusion detection with augmented wgan and parallel ensemble learning. Comput. Sec. 136, 103567 (2024)

    Article  Google Scholar 

  18. Xu, L., Veeramachaneni, K.: Synthesizing tabular data using generative adversarial networks (Nov 2018)

    Google Scholar 

  19. Xu, L., Skoularidou, M., Cuesta-Infante, A., Veeramachaneni, K.: Modeling tabular data using conditional GAN. Curran Associates Inc., Red Hook, NY, USA (2019)

    Google Scholar 

  20. Estécio Marcílio Júnior, W., Eler, D.: From explanations to feature selection: assessing shap values as feature selection mechanism (Nov 2020)

    Google Scholar 

  21. Gramegna, A., Giudici, P.: Shapley feature selection. FinTech 1, 72–80 (2022)

    Article  Google Scholar 

  22. Hassan, F., Yu, J., Syed, Z., Magsi, A.H., Ahmed, N.: Developing transparent ids for vanets using lime and shap: an empirical study. Comput. Mater. Continua 77, 1–10 (2023)

    Google Scholar 

  23. Le, G.V., Nguyen, T.H., Pham, P.D., Phung, O.V., Nguyen, H.N.: Guruws: a hybrid platform for detecting malicious web shells and web application vulnerabilities. Trans. Comput. Collective Intell. 11370, 184–208 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoa N. Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, T.T., Nguyen, P.H., Nguyen, M.Q., Nguyen, H.N. (2024). TabGAN-Powered Data Augmentation and Explainable Boosting-Based Ensemble Learning for Intrusion Detection in Industrial Control Systems. In: Nguyen, N.T., et al. Computational Collective Intelligence. ICCCI 2024. Lecture Notes in Computer Science(), vol 14811. Springer, Cham. https://doi.org/10.1007/978-3-031-70819-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70819-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70818-3

  • Online ISBN: 978-3-031-70819-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics