Abstract
There has been a notable effort, in the past five years, to develop and promote Graph Query Language, GQL, as a standard for querying graph data, akin to the role SQL plays in relational data querying. Although this goal is still a work in progress, the graph database community has been advancing by not only defining the GQL specification but also introducing additional specifications such as Property Graph Key, PG-Key, and later Property Graph Schema, PG-Schema, for specifying graph schema and dependencies. In this regard, a number of proposals have been made in the literature for expressing Functional Dependencies in graph data. Our first contribution is a survey of such proposals, highlighting important ones and their differences. Our second contribution is a solution for translating dependencies defined within such proposals into dependencies that conform to PG-Schema. Our solution is accompanied by a working prototype for translating graph dependencies into PG-Schema compliant dependencies.
This work received support from the National Research Agency under the France 2030 program, with reference to ANR-22-PESN-0007.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
i.e. FDs that conditionally hold in a part of the relation [31].
- 5.
- 6.
- 7.
- 8.
- 9.
References
Abedjan, Z., Golab, L., Naumann, F., et al.: Data Profiling. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-01865-7
Alipourlangouri, M.: Temporal dependencies for graphs. In: ACM SIGMOD Conference (2021). https://doi.org/10.1145/3448016.3450586
Angles, R., Bonifati, A., Dumbrava, S., et al.: PG-keys: keys for property graphs. In: ACM SIGMOD Conference (2021). https://doi.org/10.1145/3448016.3457561
Angles, R., Bonifati, A., Dumbrava, S., et al.: PG-schema: schemas for property graphs. PACMMOD 1(2), 1–25 (2023). https://doi.org/10.1145/3589778
Angles, R., Thakkar, H., Tomaszuk, D.: Mapping RDF databases to property graph databases. IEEE Access 8, 86091–86110 (2020). https://doi.org/10.1109/ACCESS.2020.2993117
Boncz, P.: The (sorry) state of graph database systems (2022). Keynote in EDBT
Bonifati, A., Fletcher, G., Voigt, H., et al.: Querying graphs, vol. 10, no. 3, pp. 1–184 (2018). https://doi.org/10.1007/978-3-031-01864-0
Codd, E.F.: Further normalization of the data base relational model. Data Base Syst. 6, 33–64 (1972)
De Virgilio, R., Maccioni, A., Torlone, R.: Converting relational to graph databases. In: GRADES (2013). https://doi.org/10.1145/2484425.2484426
Deutsch, A., Xu, Y., Wu, M., et al.: Aggregation support for modern graph analytics in TigerGraph. In: ACM SIGMOD Conference (2020). https://doi.org/10.1145/3318464.3386144
Fan, W.: Dependencies for graphs: challenges and opportunities. ACM J. Data Inf. Qual. 11(2), 1–12 (2019). https://doi.org/10.1145/3310230
Fan, W., Fan, Z., Tian, C., et al.: Keys for graphs. VLDB Endow. 8(12), 1590–1601 (2015). https://doi.org/10.14778/2824032.2824056
Fan, W., Geerts, F., Jia, X., et al.: Conditional functional dependencies for capturing data inconsistencies. ACM TODS 33(2), 1–48 (2008). https://doi.org/10.1145/1366102.1366103
Fan, W., Jin, R., Liu, M., et al.: Capturing associations in graphs. VLDB Endow. 13(12) (2020). https://doi.org/10.14778/3407790.3407795
Fan, W., Lu, P.: Dependencies for graphs. In: ACM SIGMOD-SIGACT-SIGAI Symposium (2017). https://doi.org/10.1145/3034786.3056114
Fan, W., Lu, P.: Dependencies for graphs. ACM TODS 44(2), 1–40 (2019). https://doi.org/10.1145/3287285
Fan, W., Wang, X., Wu, Y., et al.: Association rules with graph patterns. VLDB Endow. 8(12), 1502–1513 (2015). https://doi.org/10.14778/2824032.2824048
Fan, W., Wu, Y., Xu, J.: Functional dependencies for graphs. In: ACM SIGMOD Conference (2016). https://doi.org/10.1145/2882903.2915232
Francis, N., Gheerbrant, A., Guagliardo, P., et al.: A researcher’s digest of GQL. In: ICDT Conference, vol. 255 (2023). https://doi.org/10.4230/LIPIcs.ICDT.2023.1
Francis, N., Green, A., Guagliardo, P., et al.: Cypher: an evolving query language for property graphs. In: ACM SIGMOD Conference (2018). https://doi.org/10.1145/3183713.3190657
Kwashie, S., Liu, L., Liu, J., et al.: Certus: an effective entity resolution approach with graph differential dependencies (GDDs). VLDB Endow. 12(6), 653–666 (2019). https://doi.org/10.14778/3311880.3311883
Liu, D., Kwashie, S., Zhang, Y., et al.: An efficient approach for discovering graph entity dependencies (GEDs). Inf. Syst. 125 (2024). https://doi.org/10.1016/j.is.2024.102421
Pokornỳ, J., Valenta, M., Kovačič, J.: Integrity constraints in graph databases. Procedia Comput. Sci. 109, 975–981 (2017). https://doi.org/10.1016/j.procs.2017.05.456
van Rest, O., Hong, S., Kim, J., et al.: PGQL: a property graph query language. In: GRADES (2016). https://doi.org/10.1145/2960414.2960421
Rodriguez, M.A.: The gremlin graph traversal machine and language (invited talk). In: DBPL (2015). https://doi.org/10.1145/2815072.2815073
Sequeda, J.F., Arenas, M., Miranker, D.P.: On directly mapping relational databases to RDF and OWL. In: WWW Conference (2012). https://doi.org/10.1145/2187836.2187924
Shimomura, L.C., Fletcher, G., Yakovets, N.: GGDs: graph generating dependencies. In: ACM CIKM (2020). https://doi.org/10.1145/3340531.3412149
Skavantzos, P., Leck, U., Zhao, K., et al.: Uniqueness constraints for object stores. ACM J. Data Inf. Qual. (2023). https://doi.org/10.1145/3581758
Skavantzos, P., Link, S.: Normalizing property graphs. VLDB Endow. 16(11), 3031–3043 (2023). https://doi.org/10.14778/3611479.3611506
Skavantzos, P., Zhao, K., Link, S.: Uniqueness constraints on property graphs. In: La Rosa, M., Sadiq, S., Teniente, E. (eds.) CAiSE 2021. LNCS, vol. 12751, pp. 280–295. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-79382-1_17
Song, S., Chen, L.: Integrity Constraints on Rich Data Types. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-27177-9
Song, S., Gao, F., Huang, R., et al.: Data dependencies extended for variety and veracity: a family tree. IEEE TKDE 34(10), 4717–4736 (2020). https://doi.org/10.1109/TKDE.2020.3046443
Thapa, R.B., Giese, M.: Mapping relational database constraints to SHACL. In: Sattler, U., et al. (eds.) ISWC 2022. LNCS, vol. 13489, pp. 214–230. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19433-7_13
Tian, Y.: The world of graph databases from an industry perspective. ACM SIGMOD Rec. 51(4), 60–67 (2023). https://doi.org/10.1145/3582302.3582320
Zada, M.S.H., Yuan, B., Anjum, A., et al.: Large-scale data integration using graph probabilistic dependencies (GPDs). In: IEEE/ACM BDCAT Conference (2020). https://doi.org/10.1109/BDCAT50828.2020.00028
Zheng, X., Dasgupta, S., Gupta, A.: P2KG: declarative construction and quality evaluation of knowledge graph from polystores. In: Abelló, A., et al. (eds.) ADBIS 2023. CCIS, vol. 1850, pp. 427–439. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-42941-5_37
Zhou, G., Kwashie, S., Zhang, Y., et al.: FASTAGEDS: fast approximate graph entity dependency discovery. In: Zhang, F., Wang, H., Barhamgi, M., Chen, L., Zhou, R. (eds.) WISE 2023. LNCS, vol. 14306, pp. 451–465. Springer, Singapore (2023). https://doi.org/10.1007/978-981-99-7254-8_35
Acknowledgment
We would like to thank Ibtissem Khedim, for facilitating the initiation of this project during her master’s research internship, and the referees of the article for their insightful feedback.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Manouvrier, M., Belhajjame, K. (2024). PG-FD: Mapping Functional Dependencies to the Future Property Graph Schema Standard. In: Tekli, J., Gamper, J., Chbeir, R., Manolopoulos, Y. (eds) Advances in Databases and Information Systems. ADBIS 2024. Lecture Notes in Computer Science, vol 14918. Springer, Cham. https://doi.org/10.1007/978-3-031-70626-4_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-70626-4_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-70628-8
Online ISBN: 978-3-031-70626-4
eBook Packages: Computer ScienceComputer Science (R0)