Estimating MPdist with SAX and Machine Learning | SpringerLink
Skip to main content

Estimating MPdist with SAX and Machine Learning

  • Conference paper
  • First Online:
New Trends in Database and Information Systems (ADBIS 2024)

Abstract

MPdist is a distance measure which considers two time series to be similar if they share many similar subsequences. However, computing MPdist can be slow, especially for large time series. We propose a technique for the approximate computation of MPdist that uses the SAX representation of the time series to quickly estimate the Nearest Neighbor (NN) distance of each subsequence, and then applies a Machine Learning model to correct the accuracy loss incurred. Our method is orders of magnitude faster than the exact computation of MPdist; at the same time, our best approximation computes the NN of a time series with high accuracy. A thorough evaluation of our technique is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 9723
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 12154
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The source code and test data are available upon request.

References

  1. Aggarwal, C.C.: Data Mining. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14142-8

    Book  Google Scholar 

  2. Berndt, D.J., Clifford, J.: Using dynamic time warping to find patterns in time series. In: Proceedings of the 3rd ICKDDM, pp. 359–370 (1994)

    Google Scholar 

  3. Bountrogiannis, K., Tzagkarakis, G., Tsakalides, P.: Distribution agnostic symbolic representations for time series dimensionality reduction and online anomaly detection. IEEE Trans. Knowl. Data Eng. 35(6), 5752–5766 (2023)

    Google Scholar 

  4. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  5. Cai, Y., Ng, R.: Indexing spatio-temporal trajectories with chebyshev polynomials. In: ACM SIGMOD, p. 599–610 (2004)

    Google Scholar 

  6. Chan, K., Fu, A.W.: Efficient time series matching by wavelets. In: ICDE (1999)

    Google Scholar 

  7. Chatzigeorgakidis, G., Skoutas, D., Patroumpas, K., Palpanas, T., Athanasiou, S., Skiadopoulos, S.: Twin subsequence search in time series. arXiv:2104.06874 (2021)

  8. Drucker, H., Burges, C.J.C., Kaufman, L., Smola, A., Vapnik, V.: Support vector regression machines. In: Advances in Neural Information Processing Systems, vol. 9 (1996)

    Google Scholar 

  9. Gharghabi, S., Imani, S., Bagnall, A., Darvishzadeh, A., Keogh, E.: Matrix profile XII: MPdist: a novel time series distance measure to allow data mining in more challenging scenarios. In: ICDM, pp. 965–970 (2018)

    Google Scholar 

  10. Haykin, S.: Neural Networks: A Comprehensive Foundation, 1st edn. Prentice Hall PTR, USA (1994)

    Google Scholar 

  11. Keogh, E.J., Chakrabarti, K., Pazzani, M.J., Mehrotra, S.: Dimensionality reduction for fast similarity search in large time series databases. Knowl. I. S. 3, 263–286 (2001). https://doi.org/10.1007/PL00011669

    Article  Google Scholar 

  12. Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing SAX: a novel symbolic representation of time series. Data Min. Knowl. Discov. 15(2), 107–144 (2007)

    Article  MathSciNet  Google Scholar 

  13. Palpanas, T.: Data series management: the road to big sequence analytics. SIGMOD Rec. 44(2), 47–52 (2015)

    Article  Google Scholar 

  14. Palpanas, T.: Data series management: the next challenge. In: ICDM, pp. 196–199 (2016)

    Google Scholar 

  15. Tsoukalos, M.: Time Series Indexing. Packt Publishing (2023)

    Google Scholar 

  16. Tsoukalos, M., Platis, N., Vassilakis, C.: Estimating iSAX parameters for efficiency. In: ADBIS, pp. 3–12 (2023)

    Google Scholar 

  17. Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., Keogh, E.: Experimental comparison of representation methods and distance measures for time series data. Data Min. Knowl. Disc. 26(2), 275–309 (2013)

    Article  MathSciNet  Google Scholar 

  18. Wang, Y., Wang, P., Pei, J., Wang, W., Huang, S.: A data-adaptive and dynamic segmentation index for whole matching on time series. Proc. VLDB Endow. 6(10), 793–804 (2013)

    Article  Google Scholar 

  19. Wang, Z., Wang, Q., Wang, P., Palpanas, T., Wang, W.: Dumpy: a compact and adaptive index for large data series collections. Proc. ACM Manage. Data 1(1), 1–27 (2023)

    Google Scholar 

  20. Yeh, C.M., et al.: Matrix Profile I: all pairs similarity joins for time series: a unifying view that includes motifs, discords and shapelets. In: ICDM (2016)

    Google Scholar 

Download references

Acknowledgments

This research was partly funded by the SODASENSE project (https://sodasense.uop.gr/) under grant agreement No. MIS 5060275 (co-financed by Greece and the EU through the European Regional Development Fund).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihalis Tsoukalos .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

All authors have no conflicts of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tsoukalos, M., Chronis, P., Platis, N., Vassilakis, C. (2025). Estimating MPdist with SAX and Machine Learning. In: Tekli, J., et al. New Trends in Database and Information Systems. ADBIS 2024. Communications in Computer and Information Science, vol 2186. Springer, Cham. https://doi.org/10.1007/978-3-031-70421-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70421-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70420-8

  • Online ISBN: 978-3-031-70421-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics