HPExplorer: XAI Method to Explore the Relationship Between Hyperparameters and Model Performance | SpringerLink
Skip to main content

HPExplorer: XAI Method to Explore the Relationship Between Hyperparameters and Model Performance

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track (ECML PKDD 2024)

Abstract

Hyperparameters (HPs) play a central role in the performance of machine learning (ML) models, governing model structure, regularization, and convergence properties. Understanding the intricate relationship between HP configurations and model performance is essential for ML practitioners, especially those with limited expertise, to develop effective models that produce satisfactory results. This paper introduces HyperParameter Explorer (HPExplorer), a semi-automated eXplainable AI (XAI) method, to support ML practitioners to explore this relationship. HPExplorer integrates an automated HP discovery algorithm with an interactive visual exploration component. The HP discovery algorithm identifies performance-consistent subspaces within the HP space, where models perform similarly despite minor variations in HP configurations. The interactive visual exploration component enables users to explore the discovered performance-consistent subspaces using an interactive 2-D projection called Star Coordinate. Users can also compare HP configurations from different subspaces to explore their impact on model performance. We developed HPExplorer in close collaboration with ML practitioners, particularly geoscientists, using ML in their research. Initial feedback from scientists using HPExplorer in real-world scenarios indicates that HPExploer enhances the transparency in configuring HPs and increases the confidence of users in their decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 17159
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://git.gfz-potsdam.de/xai/clarifai.

References

  1. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(10), 281–305 (2012)

    MathSciNet  Google Scholar 

  2. Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. In: Advances in Neural Information Processing Systems, vol. 25, pp. 1–2. Curran Associates, Inc., Red Hook (2012)

    Google Scholar 

  3. Young, S.R., Rose, D.C., Karnowski, T.P., Lim, S.-H., Patton, R.M.: Optimizing deep learning hyper-parameters through an evolutionary algorithm. In: Proceedings of the Workshop on Machine Learning in High-Performance Computing Environments, pp. 1–5. ACM, New York (2015)

    Google Scholar 

  4. Dhanorkar, S., Wolf, C.T., Qian, K., Xu, A., Popa, L., Li, Y.: Who needs to know what, when?: Broadening the Explainable AI (XAI) Design Space by Looking at Explanations Across the AI Lifecycle. In: Proceedings of the Conference, pp. 1591–1602. ACM, New York (2021)

    Google Scholar 

  5. Moosbauer, J., Herbinger, J., Casalicchio, G., Lindauer, M., Bischl, B.: Towards Explaining Hyperparameter Optimization via Partial Dependence Plots. In: Proceedings of the international workshop on Automated Machine Learning (AutoML) at ICML’21, pp. 1–2. Publisher, Location (2021)

    Google Scholar 

  6. Park, H., Nam, Y., Kim, J., Choo, J.: HyperTendril: visual analytics for user-driven hyperparameter optimization of deep neural networks. IEEE Trans. Visual Comput. Graphics 27(2), 1407–1416 (2021)

    Article  Google Scholar 

  7. Park, H., et al.: VisualHyperTuner: visual analytics for user-driven hyperparameter tuning of deep neural networks. In: Proceedings of the Conference, pp. 1–2. Publisher, Location (2019)

    Google Scholar 

  8. Chatzimparmpas, A., Martins, R.M., Kucher, K., Kerren, A.: VisEvol: visual analytics to support hyperparameter search through evolutionary optimization. Comput. Graph. Forum 40(3), 69–91 (2021)

    Article  Google Scholar 

  9. Chakraborty, T., Wirth, C., Seifert, C.: Post-hoc rule based explanations for black box bayesian optimization. In: Editors (eds.) Book Title, pp. 320-337. Springer, Location (2024)

    Google Scholar 

  10. Zöller, M.-A., Titov, W., Schlegel, T., Huber, M.F.: XAutoML: a visual analytics tool for understanding and validating automated machine learning. ACM Trans. Interactive Intell. Syst. 13(4), 1–39 (2023)

    Article  Google Scholar 

  11. Kandogan, E.: Visualizing multi-dimensional clusters, trends, and outliers using Star Coordinates. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 107–116. ACM, New York (2001)

    Google Scholar 

  12. Hoffman, P., Grinstein, G., Marx, K., Grosse, I., Stanley, H.: DNA visual and analytic data mining. In: Proceedings of the Conference, pp. 437–442. Publisher, Location (1997)

    Google Scholar 

  13. Inselberg, A.: The plane with parallel coordinates. Vis. Comput. 1, 69–91 (1985)

    Article  MathSciNet  Google Scholar 

  14. Tufte, E.R.: The Visual Display of Quantitative Information. Graphics Press, USA (1986)

    Google Scholar 

  15. Etemadpour, R., Linsen, L., Paiva, J.G., Crick, C., Forbes, A.: Choosing Visualization Techniques for Multidimensional Data Projection Tasks: A Guideline with Examples. In: Editors (eds.) Book Title, vol. 598, pp. 166–186. Springer, Location (2016)

    Google Scholar 

  16. Dzemyda, G., Kurasova, O., Zilinskas, J.: Multidimensional data visualization. Methods and applications series: Springer optimization and its applications 75(122), 10–5555 (2013)

    MathSciNet  Google Scholar 

  17. Asimov, D.: The grand tour: a tool for viewing multidimensional data. SIAM J. Sci. Stat. Comput. 6(1), 128–143 (1985)

    Article  MathSciNet  Google Scholar 

  18. Renardy, M., Joslyn, L.R., Millar, J.A., Kirschner, D.E.: To sobol or not to sobol? the effects of sampling schemes in systems biology applications. Math. Biosci. 337, 108593 (2021)

    Article  MathSciNet  Google Scholar 

  19. Burhenne, S., Jacob, D., Henze, G.P.: Sampling based on Sobol’ sequences for Monte Carlo techniques applied to building simulations. In: Proceedings of the Conference, pp. 1816–1823. Publisher, Location (2011)

    Google Scholar 

  20. HILDA ’23: Proceedings of the Workshop on Human-In-the-Loop Data Analytics. ACM, New York, NY, USA (2023)

    Google Scholar 

  21. Inselberg, A.: Parallel Coordinates: Visual Multidimensional Geometry and Its Applications. Springer, Heidelberg (2017)

    Google Scholar 

  22. Decker, T., Gross, R., Koebler, A., Lebacher, M., Schnitzer, R., Weber, S.H.: The thousand faces of explainable AI along the machine learning life cycle: industrial reality and current state of research. In: AI-HCI 2023: Artificial Intelligence in HCI, pp. 184-208. Springer, Heidelberg (2023)

    Google Scholar 

  23. Weidele, D.K.I., Weisz, J.D., Oduor, E., Muller, M., Andres, J., Gray, A., Wang, D.: AutoAIViz: opening the blackbox of automated artificial intelligence with conditional parallel coordinates. In: Proceedings of the 25th International Conference on Intelligent User Interfaces, pp. 308–312. ACM, New York (2020)

    Google Scholar 

  24. Hutter, F., Hoos, H., Leyton-Brown, K.: An efficient approach for assessing hyperparameter importance. In: 31st International Conference on Machine Learning, ICML 2014, pp. 1130–1144 (2014)

    Google Scholar 

  25. Sheikholeslami, S., Meister, M., Wang, T., Payberah, A. H., Vlassov, V., Dowling, J.: AutoAblation: automated parallel ablation studies for deep learning. In: Proceedings of the 1st Workshop on Machine Learning and Systems, EuroMLSys ’21, pp. 55-61. ACM, New York (2021)

    Google Scholar 

  26. Bansal, N., Agarwal, C., Nguyen, A.: SAM: the sensitivity of attribution methods to hyperparameters. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8670–8680. IEEE Computer Society, Los Alamitos (2020)

    Google Scholar 

  27. Mishra, S., Dutta, S., Long, J., Magazzeni, D.: A survey on the robustness of feature importance and counterfactual explanations. arXiv preprint arXiv:2111.00358 (2021)

  28. Hohman, F., Kahng, M., Pienta, R., Chau, D.H.: Visual Analytics in Deep Learning: An Interrogative Survey for the Next Frontiers. IEEE Trans. Visual Comput. Graphics 25(8), 2674–2693 (2019)

    Article  Google Scholar 

  29. Jaeger, H.: The “echo state” approach to analysing and training recurrent neural networks-with an erratum note. German National Research Center for Information Technology GMD, vol. 148, no. 34, pp. 13, Bonn, Germany (2001)

    Google Scholar 

  30. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002)

    Article  Google Scholar 

  31. Sánchez-Benítez, A., Gößling, H., Pithan, F., Semmler, T., Jung, T.: The July 2019 european heat wave in a warmer climate: storyline scenarios with a coupled model using spectral nudging. J. Clim. 35(8), 2373–2390 (2022)

    Article  Google Scholar 

  32. Montgomery, D.C.: Design and analysis of experiments. John Wiley & Sons, Location (2017)

    Google Scholar 

Download references

Acknowledgments

We would like to express our gratitude to Daniel Eggert and Peter Morstein for their assistance in implementing HPExplorer. Aviad Etzion helps us in integrating HPExplorer into the real-world scenarios.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yulia Grushetskaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grushetskaya, Y., Sips, M., Schachtschneider, R., Saberioon, M., Mahan, A. (2024). HPExplorer: XAI Method to Explore the Relationship Between Hyperparameters and Model Performance. In: Bifet, A., Krilavičius, T., Miliou, I., Nowaczyk, S. (eds) Machine Learning and Knowledge Discovery in Databases. Applied Data Science Track. ECML PKDD 2024. Lecture Notes in Computer Science(), vol 14949. Springer, Cham. https://doi.org/10.1007/978-3-031-70378-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70378-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70377-5

  • Online ISBN: 978-3-031-70378-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics