Evaluation of the User-Centric Explanation Strategies for Interactive Recommenders | SpringerLink
Skip to main content

Evaluation of the User-Centric Explanation Strategies for Interactive Recommenders

  • Conference paper
  • First Online:
Explainable and Transparent AI and Multi-Agent Systems (EXTRAAMAS 2024)

Abstract

As recommendation systems become increasingly prevalent in numerous fields, the need for clear and persuasive interactions with users is rising. Integrating explainability into these systems is emerging as an effective approach to enhance user trust and sociability. This research focuses on recommendation systems that utilize a range of explainability techniques to foster trust by providing understandable personalized explanations for the recommendations made. In line with this, we study three distinct explanation methods that correspond with three basic recommendation strategies and assess their efficacy through user experiments. The findings from the experiments indicate that the majority of participants value the suggested explanation styles and favor straightforward, concise explanations over comparative ones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 6634
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 8293
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The user experiments in this study was reviewed and approved by the Ethics Committee of Özyeğin University, and informed consent was obtained from all the experiment participants.

References

  1. Yemek tarifleri (2022). https://www.diyetkolik.com/yemek-tarifleri/. Accessed 1 Jan 2022

  2. Ancona, M., Ceolini, E., Öztireli, A.C., Gross, M.H.: A unified view of gradient-based attribution methods for deep neural networks (2017)

    Google Scholar 

  3. Balog, K., Radlinski, F., Arakelyan, S.: Transparent, scrutable and explainable user models for personalized recommendation. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 265–274 (2019)

    Google Scholar 

  4. Buzcu, B., et al.: Towards interactive explanation-based nutrition virtual coaching systems. Auton. Agent. Multi-Agent Syst. 38(1), 5 (2024). https://doi.org/10.1007/s10458-023-09634-5

    Article  Google Scholar 

  5. Buzcu, B., et al.: User-centric explanation strategies for interactive recommenders. In: The 23rd International Conference on Autonomous Agents and Multi-Agent Systems (2024)

    Google Scholar 

  6. Buzcu, B., Varadhajaran, V., Tchappi, I., Najjar, A., Calvaresi, D., Aydoğan, R.: Explanation-based negotiation protocol for nutrition virtual coaching. In: Aydoğan, R., Criado, N., Lang, J., Sanchez-Anguix, V., Serramia, M. (eds.) International Conference on Principles and Practice of Multi-Agent Systems, vol. 13753, pp. 20–36. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-21203-1_2

  7. Cantürk, F., Aydoǧan, R.: Explainable active learning for preference elicitation, p. 25 (2023). https://doi.org/10.21203/rs.3.rs-3295326/v1

  8. Cemiloglu, D., Catania, M., Ali, R.: Explainable persuasion in interactive design. In: 2021 IEEE 29th International Requirements Engineering Conference Workshops (REW), pp. 377–382 (2021)

    Google Scholar 

  9. Drewnowski, A., Fulgoni, V.L.: Nutrient density: principles and evaluation tools123. Am. J. Clin. Nutr. 99(5), 1223S–1228S (2014). https://doi.org/10.3945/ajcn.113.073395, https://www.sciencedirect.com/science/article/pii/S0002916523050748

  10. Gedikli, F., Ge, M., Jannach, D.: Understanding recommendations by reading the clouds. In: Huemer, C., Setzer, T. (eds.) EC-Web 2011. LNBIP, vol. 85, pp. 196–208. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23014-1_17

    Chapter  Google Scholar 

  11. Gravina, S.A., Yep, G.L., Khan, M.: Human biology of taste. Ann. Saudi Med. 33(3), 217–222 (2013). https://doi.org/10.5144/0256-4947.2013.217, https://www.annsaudimed.net/doi/abs/10.5144/0256-4947.2013.217

  12. Guesmi, M., et al.: Explaining user models with different levels of detail for transparent recommendation: a user study. In: Adjunct Proceedings of the 30th ACM Conference on User Modeling, Adaptation and Personalization, pp. 175–183 (2022)

    Google Scholar 

  13. Herlocker, J., Konstan, J., Riedl, J.: Explaining collaborative filtering recommendations. In: Proceedings of the ACM Conference on Computer Supported Cooperative Work, pp. 241–250 (2001). https://doi.org/10.1145/358916.358995

  14. Jaccard, P.: The distribution of the flora in the alpine zone.1. New Phytol. 11(2), 37–50 (1912). https://doi.org/10.1111/j.1469-8137.1912.tb05611.x, https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1912.tb05611.x

  15. Lazar, J., Feng, J., Hochheiser, H.: Research Methods in Human-Computer Interaction (2017)

    Google Scholar 

  16. Millecamp, M., Htun, N.N., Conati, C., Verbert, K.: To explain or not to explain: the effects of personal characteristics when explaining music recommendations. In: Proceedings of the 24th International Conference on Intelligent User Interfaces, p. 397–407 (2019)

    Google Scholar 

  17. Pu, P., Chen, L.: Trust building with explanation interfaces. In: International Conference on Intelligent User Interfaces, Proceedings IUI, vol. 2006, pp. 93–100 (2006). https://doi.org/10.1145/1111449.1111475

  18. Rago, A., Cocarascu, O., Bechlivanidis, C., Lagnado, D., Toni, F.: Argumentative explanations for interactive recommendations. Artif. Intell. 296, 103506 (2021)

    Article  MathSciNet  Google Scholar 

  19. Saarela, M., Jauhiainen, S.: Comparison of feature importance measures as explanations for classification models. SN Appl. Sci. 3 (2021)

    Google Scholar 

  20. Sharma, A., Cosley, D.: Do social explanations work? Studying and modeling the effects of social explanations in recommender systems. WWW 2013 - Proceedings of the 22nd International Conference on World Wide Web, pp. 1133—1144 (2013)

    Google Scholar 

  21. Shimazu, H.: ExpertClerk: Navigating shoppers’ buying process with the combination of asking and proposing. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence - Volume 2, p. 1443–1448. IJCAI 2001, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2001)

    Google Scholar 

  22. Shimizu, R., Matsutani, M., Goto, M.: An explainable recommendation framework based on an improved knowledge graph attention network with massive volumes of side information. Knowl. Based Syst. 239, 107970 (2022)

    Article  Google Scholar 

  23. Speiser, J.L., Miller, M.E., Tooze, J., Ip, E.: A comparison of random forest variable selection methods for classification prediction modeling. Expert Syst. Appl. 134, 93–101 (2019). https://doi.org/10.1016/j.eswa.2019.05.028, https://www.sciencedirect.com/science/article/pii/S0957417419303574

  24. Symeonidis, P., Nanopoulos, A., Manolopoulos, Y.: MoviExplain: a recommender system with explanations. In: Proceedings of the Third ACM Conference on Recommender Systems, p. 317–320. RecSys 2009, Association for Computing Machinery, New York, NY, USA (2009)

    Google Scholar 

  25. Tan, J., Xu, S., Ge, Y., Li, Y., Chen, X., Zhang, Y.: Counterfactual explainable recommendation. In: Proceedings of the 30th ACM International Conference on Information & Knowledge Management, pp. 1784–1793 (2021)

    Google Scholar 

  26. Tintarev, N., Masthoff, J.: Explaining recommendations: design and evaluation. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook, pp. 353–382. Springer, Boston, MA (2015). https://doi.org/10.1007/978-1-4899-7637-6_10

    Chapter  Google Scholar 

  27. Tran, K.H., Ghazimatin, A., Saha Roy, R.: Counterfactual explanations for neural recommenders. In: Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 1627–1631 (2021)

    Google Scholar 

  28. Xu, Y., Collenette, J., Dennis, L., Dixon, C.: Dialogue-based explanations of reasoning in rule-based systems. In: 3rd Workshop on Explainable Logic-Based Knowledge Representation (2022)

    Google Scholar 

  29. Zhu, X., Wang, D., Pedrycz, W., Li, Z.: Fuzzy rule-based local surrogate models for black-box model explanation. IEEE Trans. Fuzzy Syst. 31(6), 2056–2064 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Berk Buzcu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Buzcu, B., Kuru, E., Calvaresi, D., Aydoğan, R. (2024). Evaluation of the User-Centric Explanation Strategies for Interactive Recommenders. In: Calvaresi, D., et al. Explainable and Transparent AI and Multi-Agent Systems. EXTRAAMAS 2024. Lecture Notes in Computer Science(), vol 14847. Springer, Cham. https://doi.org/10.1007/978-3-031-70074-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70074-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70073-6

  • Online ISBN: 978-3-031-70074-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics