Exploring the Range of Softness Perception Presented by Spatiotemporal Modulation in Mid-Air Ultrasound Haptic Displays | SpringerLink
Skip to main content

Exploring the Range of Softness Perception Presented by Spatiotemporal Modulation in Mid-Air Ultrasound Haptic Displays

  • Conference paper
  • First Online:
Haptics: Understanding Touch; Technology and Systems; Applications and Interaction (EuroHaptics 2024)

Abstract

In this study, we investigate the capability of ultrasound to present softness and hardness sensations through physically limited stimuli, thereby extending mapping to the stiffness properties of objects in the real world. By applying spatiotemporal modulation in mid-air ultrasound tactile displays, we alter the radius of the focus trajectory based on a finger’s vertical movement. Thus, the contact process with objects of different compliance is presented by varying the contact area. In addition to the radius change, we set a series of speed levels to alter the perceived intensity during pressing. Through psychophysical experiments, we investigate the rendering realism and softness perception of the presented rendering method. Stimuli with a low focus speed and a large rate of change of contact area during pressing are perceived as softer. Moreover, we achieve a 4.5-fold softness range between the softest and hardest stimuli while maintaining a certain level of rendering realism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8465
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Rakkolainen, I., Freeman, E., Sand, A., Raisamo, R., Brewster, S.: A survey of mid-air ultrasound haptics and its applications. IEEE Trans. Haptics 14(1), 2–19 (2020)

    Article  Google Scholar 

  2. Iwamoto, T., Tatezono, M., Shinoda, H.: Non-contact method for producing tactile sensation using airborne ultrasound. In: Haptics: Perception, Devices and Scenarios: 6th International Conference, EuroHaptics 2008 Madrid, Spain, June 10-13, 2008 Proceedings 6, pp. 504–513. Springer (2008)

    Google Scholar 

  3. Matsubayashi, A., Makino, Y., Shinoda, H.: Direct finger manipulation of 3d object image with ultrasound haptic feedback. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–11 (2019)

    Google Scholar 

  4. Howard, T., Marchal, M., Lécuyer, A., Pacchierotti, C.: Pumah: pan-tilt ultrasound mid-air haptics for larger interaction workspace in virtual reality. IEEE Trans. Haptics 13(1), 38–44 (2019)

    Article  Google Scholar 

  5. Matsubayashi, A., Yamaguchi, T., Makino, Y., Shinoda, H.: Rendering softness using airborne ultrasound. In: 2021 IEEE World Haptics Conference (WHC), pp. 355–360. IEEE (2021)

    Google Scholar 

  6. Okamoto, S., Nagano, H., Yamada, Y.: Psychophysical dimensions of tactile perception of textures. IEEE Trans. Haptics 6(1), 81–93 (2012)

    Article  Google Scholar 

  7. Nakajima, M., Hasegawa, K., Makino, Y., Shinoda, H.: Spatiotemporal pinpoint cooling sensation produced by ultrasound-driven mist vaporization on skin. IEEE Trans. Haptics 14(4), 874–884 (2021)

    Article  Google Scholar 

  8. Morisaki, T., Fujiwara, M., Makino, Y., Shinoda, H.: Midair haptic-optic display with multi-tactile texture based on presenting vibration and pressure sensation by ultrasound. In: SIGGRAPH Asia 2021 Emerging Technologies, pp. 1–2 (2021)

    Google Scholar 

  9. Hauser, S.C., Gerling, G.J.: Force-rate cues reduce object deformation necessary to discriminate compliances harder than the skin. IEEE Trans. Haptics 11(2), 232–240 (2017)

    Article  Google Scholar 

  10. Morisaki, T., Fujiwara, M., Makino, Y., Shinoda, H.: Non-vibratory pressure sensation produced by ultrasound focus moving laterally and repetitively with fine spatial step width. IEEE Trans. Haptics 15(2), 441–450 (2021)

    Article  Google Scholar 

  11. Lawrence, D.A., Pao, L.Y., Dougherty, A.M., Salada, M.A., Pavlou, Y.: Rate-hardness: a new performance metric for haptic interfaces. IEEE Trans. Robot. Autom. 16(4), 357–371 (2000)

    Article  Google Scholar 

  12. Bicchi, A., Scilingo, E.P., De Rossi, D.: Haptic discrimination of softness in teleoperation: the role of the contact area spread rate. IEEE Trans. Robot. Autom. 16(5), 496–504 (2000)

    Article  Google Scholar 

  13. Marchal, M., Gallagher, G., Lécuyer, A., Pacchierotti, C.: Can stiffness sensations be rendered in virtual reality using mid-air ultrasound haptic technologies? In: Haptics: Science, Technology, Applications: 12th International Conference, EuroHaptics 2020, Leiden, The Netherlands, September 6–9, 2020, Proceedings 12. pp. 297–306. Springer (2020)

    Google Scholar 

  14. Takahashi, R., Hasegawa, K., Shinoda, H.: Lateral modulation of midair ultrasound focus for intensified vibrotactile stimuli. In: Haptics: Science, Technology, and Applications: 11th International Conference, EuroHaptics 2018, Pisa, Italy, June 13-16, 2018, Proceedings, Part II 11. pp. 276–288. Springer (2018)

    Google Scholar 

  15. Frier, W., Ablart, D., Chilles, J., Long, B., Giordano, M., Obrist, M., Subramanian, S.: Using spatiotemporal modulation to draw tactile patterns in mid-air. In: Haptics: Science, Technology, and Applications: 11th International Conference, EuroHaptics 2018, Pisa, Italy, June 13-16, 2018, Proceedings, Part I 11. pp. 270–281. Springer (2018)

    Google Scholar 

  16. Hasegawa, K., Shinoda, H.: Modulation methods for ultrasound midair haptics. In: Ultrasound Mid-Air Haptics for Touchless Interfaces, pp. 225–240. Springer (2022)

    Google Scholar 

  17. Shull, K.R., Ahn, D., Chen, W.L., Flanigan, C.M., Crosby, A.J.: Axisymmetric adhesion tests of soft materials. Macromol. Chem. Phys. 199(4), 489–511 (1998)

    Article  Google Scholar 

  18. Dandekar, K., Raju, B.I., Srinivasan, M.A.: 3-d finite-element models of human and monkey fingertips to investigate the mechanics of tactile sense. J. Biomech. Eng. 125(5), 682–691 (2003)

    Article  Google Scholar 

  19. Inoue, S., Makino, Y., Shinoda, H.: Scalable architecture for airborne ultrasound tactile display. In: Haptic Interaction: Science, Engineering and Design 2, pp. 99–103. Springer (2018)

    Google Scholar 

  20. Onishi, R., Kamigaki, T., Suzuki, S., Morisaki, T., Fujiwara, M., Makino, Y., Shinoda, H.: Two-dimensional measurement of airborne ultrasound field using thermal images. Phys. Rev. Appl. 18(4), 044047 (2022)

    Article  Google Scholar 

  21. Takahashi, R., Hasegawa, K., Shinoda, H.: Tactile stimulation by repetitive lateral movement of midair ultrasound focus. IEEE Trans. Haptics 13(2), 334–342 (2019)

    Article  Google Scholar 

  22. Corniani, G., Saal, H.P.: Tactile innervation densities across the whole body. J. Neurophysiol. 124(4), 1229–1240 (2020)

    Article  Google Scholar 

  23. Okamoto, S., Oishi, A.: Relationship between spatial variations in static skin deformation and perceived roughness of macroscopic surfaces. IEEE Trans. Haptics 13(1), 66–72 (2020)

    Article  Google Scholar 

  24. Sun, Q., Okamoto, S., Akiyama, Y., Yamada, Y.: Multiple spatial spectral components of static skin deformation for predicting macroscopic roughness perception. IEEE Trans. Haptics 15(3), 646–654 (2022)

    Article  Google Scholar 

  25. Pasqualotto, A., Ng, M., Tan, Z.Y., Kitada, R.: Tactile perception of pleasantness in relation to perceived softness. Sci. Rep. 10(1), 11189 (2020)

    Article  Google Scholar 

  26. Stevens, S.S.: On the psychophysical law. Psychol. Rev. 64(3), 153 (1957)

    Article  Google Scholar 

  27. Morisaki, T., Fujiwara, M., Makino, Y., Shinoda, H.: Ultrasound-driven passive haptic actuator based on amplifying radiation force using simple lever mechanism. In: SIGGRAPH Asia 2022 Emerging Technologies, pp. 1–2 (2022)

    Google Scholar 

  28. Freeman, E.: Enhancing ultrasound haptics with parametric audio effects. In: Proceedings of the 2021 International Conference on Multimodal Interaction, pp. 692–696 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Shinoda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, Q., Zhang, M., Makino, Y., Shinoda, H. (2025). Exploring the Range of Softness Perception Presented by Spatiotemporal Modulation in Mid-Air Ultrasound Haptic Displays. In: Kajimoto, H., et al. Haptics: Understanding Touch; Technology and Systems; Applications and Interaction. EuroHaptics 2024. Lecture Notes in Computer Science, vol 14769. Springer, Cham. https://doi.org/10.1007/978-3-031-70061-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70061-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70060-6

  • Online ISBN: 978-3-031-70061-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics