Abstract
In this study, we investigate the capability of ultrasound to present softness and hardness sensations through physically limited stimuli, thereby extending mapping to the stiffness properties of objects in the real world. By applying spatiotemporal modulation in mid-air ultrasound tactile displays, we alter the radius of the focus trajectory based on a finger’s vertical movement. Thus, the contact process with objects of different compliance is presented by varying the contact area. In addition to the radius change, we set a series of speed levels to alter the perceived intensity during pressing. Through psychophysical experiments, we investigate the rendering realism and softness perception of the presented rendering method. Stimuli with a low focus speed and a large rate of change of contact area during pressing are perceived as softer. Moreover, we achieve a 4.5-fold softness range between the softest and hardest stimuli while maintaining a certain level of rendering realism.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Rakkolainen, I., Freeman, E., Sand, A., Raisamo, R., Brewster, S.: A survey of mid-air ultrasound haptics and its applications. IEEE Trans. Haptics 14(1), 2–19 (2020)
Iwamoto, T., Tatezono, M., Shinoda, H.: Non-contact method for producing tactile sensation using airborne ultrasound. In: Haptics: Perception, Devices and Scenarios: 6th International Conference, EuroHaptics 2008 Madrid, Spain, June 10-13, 2008 Proceedings 6, pp. 504–513. Springer (2008)
Matsubayashi, A., Makino, Y., Shinoda, H.: Direct finger manipulation of 3d object image with ultrasound haptic feedback. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–11 (2019)
Howard, T., Marchal, M., Lécuyer, A., Pacchierotti, C.: Pumah: pan-tilt ultrasound mid-air haptics for larger interaction workspace in virtual reality. IEEE Trans. Haptics 13(1), 38–44 (2019)
Matsubayashi, A., Yamaguchi, T., Makino, Y., Shinoda, H.: Rendering softness using airborne ultrasound. In: 2021 IEEE World Haptics Conference (WHC), pp. 355–360. IEEE (2021)
Okamoto, S., Nagano, H., Yamada, Y.: Psychophysical dimensions of tactile perception of textures. IEEE Trans. Haptics 6(1), 81–93 (2012)
Nakajima, M., Hasegawa, K., Makino, Y., Shinoda, H.: Spatiotemporal pinpoint cooling sensation produced by ultrasound-driven mist vaporization on skin. IEEE Trans. Haptics 14(4), 874–884 (2021)
Morisaki, T., Fujiwara, M., Makino, Y., Shinoda, H.: Midair haptic-optic display with multi-tactile texture based on presenting vibration and pressure sensation by ultrasound. In: SIGGRAPH Asia 2021 Emerging Technologies, pp. 1–2 (2021)
Hauser, S.C., Gerling, G.J.: Force-rate cues reduce object deformation necessary to discriminate compliances harder than the skin. IEEE Trans. Haptics 11(2), 232–240 (2017)
Morisaki, T., Fujiwara, M., Makino, Y., Shinoda, H.: Non-vibratory pressure sensation produced by ultrasound focus moving laterally and repetitively with fine spatial step width. IEEE Trans. Haptics 15(2), 441–450 (2021)
Lawrence, D.A., Pao, L.Y., Dougherty, A.M., Salada, M.A., Pavlou, Y.: Rate-hardness: a new performance metric for haptic interfaces. IEEE Trans. Robot. Autom. 16(4), 357–371 (2000)
Bicchi, A., Scilingo, E.P., De Rossi, D.: Haptic discrimination of softness in teleoperation: the role of the contact area spread rate. IEEE Trans. Robot. Autom. 16(5), 496–504 (2000)
Marchal, M., Gallagher, G., Lécuyer, A., Pacchierotti, C.: Can stiffness sensations be rendered in virtual reality using mid-air ultrasound haptic technologies? In: Haptics: Science, Technology, Applications: 12th International Conference, EuroHaptics 2020, Leiden, The Netherlands, September 6–9, 2020, Proceedings 12. pp. 297–306. Springer (2020)
Takahashi, R., Hasegawa, K., Shinoda, H.: Lateral modulation of midair ultrasound focus for intensified vibrotactile stimuli. In: Haptics: Science, Technology, and Applications: 11th International Conference, EuroHaptics 2018, Pisa, Italy, June 13-16, 2018, Proceedings, Part II 11. pp. 276–288. Springer (2018)
Frier, W., Ablart, D., Chilles, J., Long, B., Giordano, M., Obrist, M., Subramanian, S.: Using spatiotemporal modulation to draw tactile patterns in mid-air. In: Haptics: Science, Technology, and Applications: 11th International Conference, EuroHaptics 2018, Pisa, Italy, June 13-16, 2018, Proceedings, Part I 11. pp. 270–281. Springer (2018)
Hasegawa, K., Shinoda, H.: Modulation methods for ultrasound midair haptics. In: Ultrasound Mid-Air Haptics for Touchless Interfaces, pp. 225–240. Springer (2022)
Shull, K.R., Ahn, D., Chen, W.L., Flanigan, C.M., Crosby, A.J.: Axisymmetric adhesion tests of soft materials. Macromol. Chem. Phys. 199(4), 489–511 (1998)
Dandekar, K., Raju, B.I., Srinivasan, M.A.: 3-d finite-element models of human and monkey fingertips to investigate the mechanics of tactile sense. J. Biomech. Eng. 125(5), 682–691 (2003)
Inoue, S., Makino, Y., Shinoda, H.: Scalable architecture for airborne ultrasound tactile display. In: Haptic Interaction: Science, Engineering and Design 2, pp. 99–103. Springer (2018)
Onishi, R., Kamigaki, T., Suzuki, S., Morisaki, T., Fujiwara, M., Makino, Y., Shinoda, H.: Two-dimensional measurement of airborne ultrasound field using thermal images. Phys. Rev. Appl. 18(4), 044047 (2022)
Takahashi, R., Hasegawa, K., Shinoda, H.: Tactile stimulation by repetitive lateral movement of midair ultrasound focus. IEEE Trans. Haptics 13(2), 334–342 (2019)
Corniani, G., Saal, H.P.: Tactile innervation densities across the whole body. J. Neurophysiol. 124(4), 1229–1240 (2020)
Okamoto, S., Oishi, A.: Relationship between spatial variations in static skin deformation and perceived roughness of macroscopic surfaces. IEEE Trans. Haptics 13(1), 66–72 (2020)
Sun, Q., Okamoto, S., Akiyama, Y., Yamada, Y.: Multiple spatial spectral components of static skin deformation for predicting macroscopic roughness perception. IEEE Trans. Haptics 15(3), 646–654 (2022)
Pasqualotto, A., Ng, M., Tan, Z.Y., Kitada, R.: Tactile perception of pleasantness in relation to perceived softness. Sci. Rep. 10(1), 11189 (2020)
Stevens, S.S.: On the psychophysical law. Psychol. Rev. 64(3), 153 (1957)
Morisaki, T., Fujiwara, M., Makino, Y., Shinoda, H.: Ultrasound-driven passive haptic actuator based on amplifying radiation force using simple lever mechanism. In: SIGGRAPH Asia 2022 Emerging Technologies, pp. 1–2 (2022)
Freeman, E.: Enhancing ultrasound haptics with parametric audio effects. In: Proceedings of the 2021 International Conference on Multimodal Interaction, pp. 692–696 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Sun, Q., Zhang, M., Makino, Y., Shinoda, H. (2025). Exploring the Range of Softness Perception Presented by Spatiotemporal Modulation in Mid-Air Ultrasound Haptic Displays. In: Kajimoto, H., et al. Haptics: Understanding Touch; Technology and Systems; Applications and Interaction. EuroHaptics 2024. Lecture Notes in Computer Science, vol 14769. Springer, Cham. https://doi.org/10.1007/978-3-031-70061-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-70061-3_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-70060-6
Online ISBN: 978-3-031-70061-3
eBook Packages: Computer ScienceComputer Science (R0)