Abstract
In tactile interaction in a virtual space, tactile presentation to the palm over a wider plane is required. A highly uniform tactile stimulus is required to present a stationary flat surface on the palm, and it is necessary to identify the parameters of tactile presentation that improve uniformity. Generating ultrasound pressure distribution over a surface area improves the uniformity of tactile stimulus, whereas the perceived intensity decreases as the presentation area expands because the sound pressure is dispersed. In this study, we aimed to present a stronger surface stimulus by using spatiotemporal modulation (STM) to rapidly move the ultrasound focus within the presentation area and thus distribute the concentrated sound pressure over the entire area. We showed that tactile presentation of a square area as a simple shape can be achieved using STM by adjusting the focal path and the number of path passes per unit of time, thereby improving the perceived intensity while maintaining spatial uniformity and temporal constancy compared to acoustic field control.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barreiro, H., Sinclair, S., Otaduy, M.A.: Path routing optimization for STM ultrasound rendering. IEEE Trans. Haptics 13(1), 45–51 (2020). https://doi.org/10.1109/TOH.2019.2963647
Carter, T., Seah, S.A., Long, B., Drinkwater, B., Subramanian, S.: Ultrahaptics: multi-point mid-air haptic feedback for touch surfaces. In: UIST 2013 - Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology, pp. 505–514 (2013). https://doi.org/10.1145/2501988.2502018
Frier, W., et al.: Using spatiotemporal modulation to draw tactile patterns in mid-air. In: Prattichizzo, D., Shinoda, H., Tan, H.Z., Ruffaldi, E., Frisoli, A. (eds.) EuroHaptics 2018. LNCS, vol. 10893, pp. 270–281. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93445-7_24
Frier, W., Pittera, D., Ablart, D., Obrist, M., Subramanian, S.: Sampling strategy for ultrasonic mid-air haptics. In: Conference on Human Factors in Computing Systems - Proceedings, pp. 1–11 (2019). https://doi.org/10.1145/3290605.3300351
Gescheider, G., Bolanowski, S., Verrillo, R.: Some characteristics of tactile channels. Behav. Brain Res. 148(1), 35–40 (2004). https://doi.org/10.1016/S0166-4328(03)00177-3
Hoshi, T., Takahashi, M., Iwamoto, T., Shinoda, H.: Noncontact tactile display based on radiation pressure of airborne ultrasound. IEEE Trans. Haptics 3(3), 155–165 (2010). https://doi.org/10.1109/TOH.2010.4
Inoue, S., Makino, Y., Shinoda, H.: Active touch perception produced by airborne ultrasonic haptic hologram. IEEE World Haptics Conf. WHC 2015, 362–367 (2015). https://doi.org/10.1109/WHC.2015.7177739
Jang, J., Frier, W., Park, J.: Multimodal volume data exploration through mid-air haptics. In: Proceedings - 2022 IEEE International Symposium on Mixed and Augmented Reality, ISMAR 2022 D, pp. 243–251 (2022).https://doi.org/10.1109/ISMAR55827.2022.00039
Jang, J., Park, J.: SPH fluid tactile rendering for ultrasonic mid-air haptics. IEEE Trans. Haptics 13(1), 116–122 (2020). https://doi.org/10.1109/TOH.2020.2966605
Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2(2), 164–168 (1944)
Long, B., Seah, S.A., Carter, T., Subramanian, S.: Rendering volumetric haptic shapes in mid-air using ultrasound. ACM Trans. Graph. 33(6), 1 (2014). https://doi.org/10.1145/2661229.2661257
Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11(2), 431–441 (1963). https://doi.org/10.1137/0111030
Matsubayashi, A., Makino, Y., Shinoda, H.: Accurate control of sound field amplitude for ultrasound haptic rendering using the Levenberg-Marquardt method. In: IEEE Haptics Symposium, HAPTICS 2022-March, pp. 1–6 (2022). https://doi.org/10.1109/HAPTICS52432.2022.9765564
Suzuki, S., Fujiwara, M., Makino, Y., Shinoda, H.: Reducing amplitude fluctuation by gradual phase shift in midair ultrasound haptics. IEEE Trans. Haptics 13(1), 87–93 (2020). https://doi.org/10.1109/TOH.2020.2965946
Suzuki, S., Inoue, S., Fujiwara, M., Makino, Y., Shinoda, H.: AUTD3: scalable airborne ultrasound tactile display. IEEE Trans. Haptics 14(4), 740–749 (2021). https://doi.org/10.1109/TOH.2021.3069976
Takahashi, R., Hasegawa, K., Shinoda, H.: Tactile stimulation by repetitive lateral movement of midair ultrasound focus. IEEE Trans. Haptics 13(2), 334–342 (2020). https://doi.org/10.1109/TOH.2019.2946136
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kishi, N., Matsubayashi, A., Makino, Y., Shinoda, H. (2025). Surface Tactile Presentation to the Palm Using an Aerial Ultrasound Tactile Display. In: Kajimoto, H., et al. Haptics: Understanding Touch; Technology and Systems; Applications and Interaction. EuroHaptics 2024. Lecture Notes in Computer Science, vol 14768. Springer, Cham. https://doi.org/10.1007/978-3-031-70058-3_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-70058-3_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-70057-6
Online ISBN: 978-3-031-70058-3
eBook Packages: Computer ScienceComputer Science (R0)