Dancing to the State of the Art? | SpringerLink
Skip to main content

Dancing to the State of the Art?

How Candidate Lists Influence LKH for Solving the Traveling Salesperson Problem

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVIII (PPSN 2024)

Abstract

Solving the Traveling Salesperson Problem (TSP) remains a persistent challenge, despite its fundamental role in numerous generalized applications in modern contexts. Heuristic solvers address the demand for finding high-quality solutions efficiently. Among these solvers, the Lin-Kernighan-Helsgaun (LKH) heuristic stands out, as it complements the performance of genetic algorithms across a diverse range of problem instances. However, frequent timeouts on challenging instances hinder the practical applicability of the solver.

Within this work, we investigate a previously overlooked factor contributing to many timeouts: The use of a fixed candidate set based on a tree structure. Our investigations reveal that candidate sets based on Hamiltonian circuits contain more optimal edges. We thus propose to integrate this promising initialization strategy, in the form of POPMUSIC, within an efficient restart version of LKH. As confirmed by our experimental studies, this refined TSP heuristic is much more efficient – causing fewer timeouts and improving the performance (in terms of penalized average runtime) by an order of magnitude – and thereby challenges the state of the art in TSP solving.

J. Heins and L. Schäpermeier—Equal contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 8007
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10009
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Applegate, D.L., Bixby, R.E., Chvátal, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study, vol. 17. Princeton University Press, Princeton (2011)

    Google Scholar 

  2. Bossek, J., Kerschke, P., Neumann, A., Wagner, M., Neumann, F., Trautmann, H.: Evolving diverse TSP instances by means of novel and creative mutation operators. In: Friedrich, T., Doerr, C., Arnold, D.V. (eds.) Proceedings of the 15th ACM/SIGEVO Conference on Foundations of Genetic Algorithms (FOGA), pp. 58–71. ACM (2019). https://doi.org/10.1145/3299904.3340307

  3. Croes, G.A.: A method for solving traveling-salesman problems. Oper. Res. 6(6), 791–812 (1958). https://www.jstor.org/stable/167074

  4. Dubois-Lacoste, J., Hoos, H.H., Stützle, T.: On the empirical scaling behaviour of state-of-the-art local search algorithms for the euclidean TSP. In: Silva, S., Esparcia-Alcázar, A.I. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), pp. 377–384. ACM (2015). https://doi.org/10.1145/2739480.2754747

  5. Heins, J., Bossek, J., Pohl, J., Seiler, M., Trautmann, H., Kerschke, P.: On the potential of normalized TSP features for automated algorithm selection. In: Proceedings of the 16th ACM/SIGEVO Conference on Foundations of Genetic Algorithms (FOGA), pp. 1–15. ACM (2021). https://doi.org/10.1145/3450218.3477308

  6. Heins, J., Bossek, J., Pohl, J., Seiler, M., Trautmann, H., Kerschke, P.: A study on the effects of normalized TSP features for automated algorithm selection. Theoret. Comput. Sci. 940, 123–145 (2023). https://doi.org/10.1016/j.tcs.2022.10.019

    Article  MathSciNet  Google Scholar 

  7. Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning trees. Oper. Res. 18(6), 1138–1162 (1970). https://doi.org/10.1287/opre.18.6.1138

    Article  MathSciNet  Google Scholar 

  8. Held, M., Karp, R.M.: The traveling-salesman problem and minimum spanning trees: part II. Math. Program. 1(1), 6–25 (1971). https://doi.org/10.1007/BF01584070

    Article  Google Scholar 

  9. Helsgaun, K.: An effective implementation of the Lin-Kernighan traveling salesman heuristic. Eur. J. Oper. Res. 126(1), 106–130 (2000). https://doi.org/10.1016/S0377-2217(99)00284-2

    Article  MathSciNet  Google Scholar 

  10. Helsgaun, K.: General k-opt submoves for the Lin-Kernighan TSP heuristic. Math. Program. Comput. 1, 119–163 (2009). https://doi.org/10.1007/s12532-009-0004-6

    Article  MathSciNet  Google Scholar 

  11. Kerschke, P., Bossek, J., Trautmann, H.: Parameterization of state-of-the-art performance indicators: a robustness study based on inexact TSP solvers. In: Proceedings of the Genetic and Evolutionary Computation Conference (GECCO) Companion, pp. 1737–1744. ACM (2018). https://doi.org/10.1145/3205651.3208233

  12. Kerschke, P., Kotthoff, L., Bossek, J., Hoos, H.H., Trautmann, H.: Leveraging TSP solver complementarity through machine learning. Evol. Comput. 26(4), 597–620 (2018). https://doi.org/10.1162/evco_a_00215

    Article  Google Scholar 

  13. Kotthoff, L., Kerschke, P., Hoos, H., Trautmann, H.: Improving the state of the art in inexact TSP solving using per-instance algorithm selection. In: Dhaenens, C., Jourdan, L., Marmion, M.-E. (eds.) LION 2015. LNCS, vol. 8994, pp. 202–217. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19084-6_18

    Chapter  Google Scholar 

  14. Lin, S., Kernighan, B.W.: An effective heuristic algorithm for the traveling-salesman problem. Oper. Re. 21(2), 498–516 (1973). https://doi.org/10.1287/opre.21.2.498

    Article  MathSciNet  Google Scholar 

  15. Nagata, Y., Kobayashi, S.: Edge assembly crossover: a high-power genetic algorithm for the traveling salesman problem. In: Proceedings of the 7th International Conference on Genetic Algorithms (ICGA), pp. 450–457 (1997)

    Google Scholar 

  16. Nagata, Y., Kobayashi, S.: A powerful genetic algorithm using edge assembly crossover for the traveling salesman problem. INFORMS J. Comput. 25(2), 346–363 (2013). https://doi.org/10.1287/IJOC.1120.0506

    Article  MathSciNet  Google Scholar 

  17. Ribeiro, C.C., Hansen, P., Taillard, E.D., Voss, S.: POPMUSIC - partial optimization metaheuristic under special intensification conditions. In: Ribeiro, C.C., Hansen, P. (eds.) Essays and Surveys in Metaheuristics, pp. 613–629. Springer, New York (2002). https://doi.org/10.1007/978-1-4615-1507-4

    Chapter  Google Scholar 

  18. Seiler, M.V., Rook, J., Heins, J., Preuß, O.L., Bossek, J., Trautmann, H.: Using reinforcement learning for per-instance algorithm configuration on the TSP. In: IEEE Symposium Series on Computational Intelligence (SSCI), pp. 361–368. IEEE (2023). https://doi.org/10.1109/SSCI52147.2023.10372008

  19. Taillard, É.: Parallel iterative search methods for vehicle routing problems. Networks 23(8), 661–673 (1993). https://doi.org/10.1002/net.3230230804

    Article  Google Scholar 

  20. Taillard, É.D., Helsgaun, K.: POPMUSIC for the travelling salesman problem. Eur. J. Oper. Res. 272(2), 420–429 (2019). https://doi.org/10.1016/J.EJOR.2018.06.039

    Article  MathSciNet  Google Scholar 

  21. Varadarajan, S., Whitley, L.D.: The massively parallel mixing genetic algorithm for the traveling salesman problem. In: Auger, A., Stützle, T. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO), pp. 872–879. ACM (2019). https://doi.org/10.1145/3321707.3321772

  22. Xie, X.F., Liu, J.: Multiagent optimization system for solving the traveling salesman problem (TSP). IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 39(2), 489–502 (2008). https://doi.org/10.1109/TSMCB.2008.2006910

Download references

Acknowledgments

The authors gratefully acknowledge the computing time made available to them on the high-performance computer at the NHR Center of TU Dresden. This center is jointly supported by the Federal Ministry of Education and Research and the state governments participating in the NHR (www.nhr-verein.de/unsere-partner). This research received financial support from the German Academic Exchange Service (DAAD) under the Program for Project-Related Personal Exchange (PPP). Lennart Schäpermeier and Pascal Kerschke acknowledge support by the Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI) Dresden/Leipzig.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Heins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Heins, J., Schäpermeier, L., Kerschke, P., Whitley, D. (2024). Dancing to the State of the Art?. In: Affenzeller, M., et al. Parallel Problem Solving from Nature – PPSN XVIII. PPSN 2024. Lecture Notes in Computer Science, vol 15148. Springer, Cham. https://doi.org/10.1007/978-3-031-70055-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70055-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70054-5

  • Online ISBN: 978-3-031-70055-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics