Feistel-Like Structures Revisited: Classification and Cryptanalysis | SpringerLink
Skip to main content

Feistel-Like Structures Revisited: Classification and Cryptanalysis

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2024 (CRYPTO 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14923))

Included in the following conference series:

  • 1210 Accesses

Abstract

In 2023, Liu et al. summarized the Feistel-like structures which use a single round function, and proposed a unified form of these structures which is named the unified structure. This paper focuses on the classification and cryptanalysis of a particular kind of unified structures which covers the vast majority of known situations and is named regular unified structure. The main results are as follows:

    First of all, we give the definition of Affine Equivalence between different structures, present a condition for two regular structures being affine equivalent, and give two normalized forms of a regular unified structure. Surprisingly, we find that a target-heavy generalised Feistel cipher is always affine equivalent to a source-heavy generalised Feistel cipher with the same round function, which shows these two structures always have almost the same cryptographic properties.

    Secondly, we give the definition of a Self-Equivalent structure, whose dual structure is affine equivalent to the structure itself. We prove that there is a large portion of the unified structures such as the SM4 and the Mars structures that are among the self-equivalent ones. For these structures, there is a one-to-one correspondence between the impossible differentials and the zero correlation linear hulls, which illustrates that the longest integral of a self-equivalent structure covers at least the rounds of the longest zero correlation linear hull/impossible differential.

    At last, we give the definition of the Refined Full-Diffusion Round of a structure, and exploit the \(\epsilon \)-\(\delta \) technique to compute this value, which can be further used to give provable security evaluations of unified structures against impossible differential and zero correlation linear cryptanalysis. For example, we prove that both the longest impossible differential and zero correlation linear hull of the d-branch SM4-like structures cover exactly \(3d-1\) rounds.

    Our results could give new guidelines for both the cryptanalysis and the design of Feistel-like ciphers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14871
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 10581
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aoki, K., et al.: Camellia: a 128-bit block cipher suitable for multiple platforms — design and analysis. In: Stinson, D.R., Tavares, S. (eds.) Selected Areas in Cryptography, pp. 39–56. Springer, Berlin, Heidelberg (2001). https://doi.org/10.1007/3-540-44983-3_4

    Chapter  Google Scholar 

  2. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK families of lightweight block ciphers. IACR Cryptol. ePrint Arch. 2013, 404 (2013). http://eprint.iacr.org/2013/404

  3. Berger, T.P., Minier, M.: Some results using the matrix methods on impossible, integral and zero-correlation distinguishers for Feistel-like ciphers. In: Biryukov, A., Goyal, V. (eds.) Progress in Cryptology – INDOCRYPT 2015: 16th International Conference on Cryptology in India, Bangalore, India, December 6-9, 2015, Proceedings, pp. 180–197. Springer International Publishing, Cham (2015). https://doi.org/10.1007/978-3-319-26617-6_10

    Chapter  Google Scholar 

  4. Berger, T.P., Minier, M., Thomas, G.: Extended generalized Feistel networks using matrix representation. In: Lange, T., Lauter, K., Lisoněk, P. (eds.) Selected Areas in Cryptography – SAC 2013, pp. 289–305. Springer, Berlin, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43414-7_15

    Chapter  Google Scholar 

  5. Beyne, T., Liu, Y.: Truncated differential attacks on contracting Feistel ciphers. IACR Trans. Symmetric Cryptol. 2022(2), 141–160 (2022). https://doi.org/10.46586/tosc.v2022.i2.141-160

  6. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of skipjack reduced to 31 rounds using impossible differentials. In: Stern, J. (ed.) Advances in Cryptology — EUROCRYPT ’99, pp. 12–23. Springer, Berlin, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_2

    Chapter  Google Scholar 

  7. Blondeau, C., Bogdanov, A., Wang, M.: On the (In)equivalence of impossible differential and zero-correlation distinguishers for Feistel- and Skipjack-type ciphers. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) Applied Cryptography and Network Security: 12th International Conference, ACNS 2014, Lausanne, Switzerland, June 10-13, 2014. Proceedings, pp. 271–288. Springer International Publishing, Cham (2014). https://doi.org/10.1007/978-3-319-07536-5_17

    Chapter  Google Scholar 

  8. Blondeau, C., Leander, G., Nyberg, K.: Differential-linear cryptanalysis revisited. J. Cryptol. 30(3), 859–888 (2017). https://doi.org/10.1007/s00145-016-9237-5

    Article  MathSciNet  Google Scholar 

  9. Blondeau, C., Nyberg, K.: New links between differential and linear cryptanalysis. In: Johansson, T., Nguyen, P.Q. (eds.) Advances in Cryptology – EUROCRYPT 2013: 32nd Annual International Conference on the Theory and Applications of Cryptographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings, pp. 388–404. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_24

    Chapter  Google Scholar 

  10. Blondeau, C., Nyberg, K.: Links between truncated differential and multidimensional linear properties of block ciphers and underlying attack complexities. In: Nguyen, P.Q., Oswald, E. (eds.) Advances in Cryptology – EUROCRYPT 2014, pp. 165–182. Springer, Berlin, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_10

    Chapter  Google Scholar 

  11. Bogdanov, A., Leander, G., Nyberg, K., Wang, M.: Integral and multidimensional linear distinguishers with correlation zero. In: Wang, X., Sako, K. (eds.) Advances in Cryptology – ASIACRYPT 2012, pp. 244–261. Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_16

    Chapter  Google Scholar 

  12. Bogdanov, A., Rijmen, V.: Linear hulls with correlation zero and linear cryptanalysis of block ciphers. Des. Codes Cryptogr. 70(3), 369–383 (2014). https://doi.org/10.1007/s10623-012-9697-z

    Article  MathSciNet  Google Scholar 

  13. Carlet, C.: Boolean functions for cryptography and error correcting codes. Boolean Methods and Models (2006)

    Google Scholar 

  14. Cauchois, V., Gomez, C., Thomas, G.: General Diffusion Analysis: how to find optimal permutations for generalized Type-II Feistel schemes. IACR Trans. Symmetric Cryptol. 2019(1), 264–301 (2019). https://doi.org/10.13154/tosc.v2019.i1.264-301

  15. Chabaud, F., Vaudenay, S.: Links between differential and linear cryptanalysis. In: De Santis, A. (ed.) Advances in Cryptology — EUROCRYPT’94, pp. 356–365. Springer, Berlin, Heidelberg (1995). https://doi.org/10.1007/BFb0053450

    Chapter  Google Scholar 

  16. Cid, C., Hosoyamada, A., Liu, Y., Sim, S.M.: Quantum cryptanalysis on contracting Feistel structures and observation on related-key settings. In: Bhargavan, K., Oswald, E., Prabhakaran, M. (eds.) Progress in Cryptology – INDOCRYPT 2020: 21st International Conference on Cryptology in India, Bangalore, India, December 13–16, 2020, Proceedings, pp. 373–394. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-65277-7_17

    Chapter  Google Scholar 

  17. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Information Security and Cryptography, Springer (2002). https://doi.org/10.1007/978-3-662-04722-4

  18. Demirci, H., Selçuk, A.A.: A meet-in-the-middle attack on 8-Round AES. In: Nyberg, K. (ed.) Fast Software Encryption, pp. 116–126. Springer, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71039-4_7

    Chapter  Google Scholar 

  19. Diffie, W., Ledin, G.: SMS4 encryption algorithm for wireless networks. IACR Cryptol. ePrint Arch., 329 (2008). http://eprint.iacr.org/2008/329

  20. Guo, J., Jean, J., Nikolic, I., Sasaki, Y.: Meet-in-the-middle attacks on classes of contracting and expanding Feistel constructions. IACR Trans. Symmetric Cryptol. 2016(2), 307–337 (2016). https://doi.org/10.13154/tosc.v2016.i2.307-337

  21. Hao, Y., Leander, G., Meier, W., Todo, Y., Wang, Q.: Modeling for three-subset division property without unknown subset. J. Cryptol. 34(3), 22 (2021). https://doi.org/10.1007/s00145-021-09383-2

  22. Hu, K., Sun, S., Wang, M., Wang, Q.: An algebraic formulation of the division property: revisiting degree evaluations, cube attacks, and key-independent sums. In: Moriai, S., Wang, H. (eds.) Advances in Cryptology – ASIACRYPT 2020: 26th International Conference on the Theory and Application of Cryptology and Information Security, Daejeon, South Korea, December 7–11, 2020, Proceedings, Part I, pp. 446–476. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-64837-4_15

    Chapter  Google Scholar 

  23. Kwon, D., et al.: New Block Cipher: ARIA. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 432–445. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24691-6_32

    Chapter  Google Scholar 

  24. Lai, X., Massey, J.L.: A proposal for a new block encryption standard. In: Damgård, I.B. (ed.) Advances in Cryptology — EUROCRYPT ’90, pp. 389–404. Springer, Berlin, Heidelberg (1991). https://doi.org/10.1007/3-540-46877-3_35

    Chapter  Google Scholar 

  25. Leander, G.: On linear hulls, statistical saturation attacks, PRESENT and a cryptanalysis of PUFFIN. In: Paterson, K.G. (ed.) Advances in Cryptology – EUROCRYPT 2011, pp. 303–322. Springer, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_18

    Chapter  Google Scholar 

  26. Liu, J., et al.: New wine old bottles: Feistel structure revised. IEEE Trans. Inf. Theory 69(3), 2000–2008 (2023). https://doi.org/10.1109/TIT.2022.3223139

    Article  MathSciNet  Google Scholar 

  27. Schneier, B., Kelsey, J.: Unbalanced Feistel networks and block cipher design. In: Gollmann, D. (ed.) Fast Software Encryption, pp. 121–144. Springer, Berlin, Heidelberg (1996). https://doi.org/10.1007/3-540-60865-6_49

    Chapter  Google Scholar 

  28. Sun, B.: Provable security evaluation of block ciphers against Demirci-Selçuk’s meet-in-the-middle attack. IEEE Trans. Inf. Theory 67(7), 4838–4844 (2021). https://doi.org/10.1109/TIT.2021.3058377

  29. Sun, B., Li, R., Qu, L., Li, C.: SQUARE attack on block ciphers with low algebraic degree. Sci. China Inf. Sci. 53(10), 1988–1995 (2010). https://doi.org/10.1007/s11432-010-4061-2

  30. Sun, B., Liu, M., Guo, J., Rijmen, V., Li, R.: Provable security evaluation of structures against impossible differential and zero correlation linear cryptanalysis. In: Fischlin, M., Coron, J.-S. (eds.) Advances in Cryptology – EUROCRYPT 2016: 35th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part I, pp. 196–213. Springer, Berlin, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_8

    Chapter  Google Scholar 

  31. Sun, B., et al.: Links among impossible differential, integral and zero correlation linear cryptanalysis. In: Gennaro, R., Robshaw, M. (eds.) Advances in Cryptology – CRYPTO 2015: 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I, pp. 95–115. Springer, Berlin, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_5

    Chapter  Google Scholar 

  32. Suzaki, T., Minematsu, K.: Improving the generalized Feistel. In: Hong, S., Iwata, T. (eds.) Fast Software Encryption, pp. 19–39. Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13858-4_2

    Chapter  Google Scholar 

  33. Todo, Y.: Structural evaluation by generalized integral property. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptology – EUROCRYPT 2015: 34th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, pp. 287–314. Springer, Berlin, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_12

    Chapter  Google Scholar 

  34. Vaudenay, S.: On the Lai-Massey scheme. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) Advances in Cryptology - ASIACRYPT’99, pp. 8–19. Springer, Berlin, Heidelberg (1999). https://doi.org/10.1007/978-3-540-48000-6_2

    Chapter  Google Scholar 

  35. Yanagihara, S., Iwata, T.: On permutation layer of type 1, source-heavy, and target-heavy generalized Feistel structures. In: Lin, D., Tsudik, G., Wang, X. (eds.) Cryptology and Network Security, pp. 98–117. Springer, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25513-7_8

    Chapter  Google Scholar 

  36. Yanagihara, S., Iwata, T.: Improving the permutation layer of type 1, type 3, source-heavy, and target-heavy generalized Feistel structures. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 96-A(1), 2–14 (2013). https://doi.org/10.1587/transfun.E96.A.2

Download references

Acknowledgement

The authors would like to express our sincere gratitude to the anonymous reviewers for their useful comments and suggestions, and to Zhenzhen Bao for her shepherding. This work is supported by the National Natural Science Foundation of China (No: U2336209, 62272147, 62272470, 62072466, 62002370, 62201585), Science and Technology on Communication Security Laboratory Foundation (No: 6142103012207), the Innovation Group Project of the Natural Science Foundation of Hubei Province of China (No: 2023AFA021), and the Innovation Program for Quantum Science and Technology (No: 2021ZD0302902).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zejun Xiang , Longjiang Qu or Shaojing Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, B. et al. (2024). Feistel-Like Structures Revisited: Classification and Cryptanalysis. In: Reyzin, L., Stebila, D. (eds) Advances in Cryptology – CRYPTO 2024. CRYPTO 2024. Lecture Notes in Computer Science, vol 14923. Springer, Cham. https://doi.org/10.1007/978-3-031-68385-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-68385-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-68384-8

  • Online ISBN: 978-3-031-68385-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics