Automated Hierarchical Conflict Reduction for Crowdsourced Annotation Tasks Using Belief Functions | SpringerLink
Skip to main content

Automated Hierarchical Conflict Reduction for Crowdsourced Annotation Tasks Using Belief Functions

  • Conference paper
  • First Online:
Belief Functions: Theory and Applications (BELIEF 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14909))

Included in the following conference series:

  • 159 Accesses

Abstract

A typical crowdsourcing task is concept labeling, where participants annotate e.g. images using a list of predefined concepts. Recent popular campaigns for environmental bird monitoring even use hierarchies of concepts (taxonomies of species) to obtain the most precise labeling of bird images. But in most applications, volunteer opinions are isolated from each other, and decision is taken upon majority voting. In this work we propose a new iterative labeling process where participants express their opinions together, on ascending levels of the taxonomy. Level changes are performed to minimize opinion conflict, according to the belief function theory. This complex task is orchestrated by a finite-state automaton driven by conflict measures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 7550
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 8293
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.mturk.com/.

  2. 2.

    https://www.wirk.io/.

  3. 3.

    https://headwork.irisa.fr/headwork/.

References

  1. Amsterdamer, Y., Davidson, S.B., Milo, T., Novgorodov, S., Somech, A.: Oassis: query driven crowd mining. In: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, pp. 589–600. ACM (2014)

    Google Scholar 

  2. Blanco, H.H.R.: Machine-learning for spammer detection in crowd-sourcing. Human Computation AAAI Technical Report (2012)

    Google Scholar 

  3. Boim, R., Greenshpan, O., Milo, T., Novgorodov, S., Polyzotis, N., Tan, W.C.: Asking the right questions in crowd data sourcing. In: 2012 IEEE 28th International Conference on Data Engineering, pp. 1261–1264. IEEE (2012)

    Google Scholar 

  4. Delmotte, F., Smets, P.: Target identification based on the transferable belief model interpretation of dempster-shafer model. IEEE Trans. Syst. Man Cybern.-Part A: Syst. Hum. 34(4), 457–471 (2004)

    Article  Google Scholar 

  5. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38, 325–339 (1967)

    Article  MathSciNet  Google Scholar 

  6. Farrell III, W.J., Knapp, A.M.: Multisource taxonomy-based classication using the transferable belief model. In: Multisensor, Multisource Information Fusion: Architectures, Algorithms, and Applications 2012. vol. 8407, pp. 35–41. SPIE (2012)

    Google Scholar 

  7. Folorunso, O., Mustapha, O.A.: A fuzzy expert system to trust-based access control in crowdsourcing environments. Appl. Comput. Inf. 11(2), 116–129 (2015)

    Google Scholar 

  8. Gross-Amblard, D., Tommasi, M., Rakotoniaina, I., Thierry, C., Singh, R., Jacoboni, L.: Headwork: a data-centric crowdsourcing platform for complex tasks and participants. In: EDBT 2024 (2024)

    Google Scholar 

  9. Jousselme, A.L., Grenier, D., Bossé, É.: A new distance between two bodies of evidence. Inf. Fusion 2(2), 91–101 (2001)

    Article  Google Scholar 

  10. Karampinas, D., Triantafillou, P.: Crowdsourcing taxonomies. In: Simperl, E., Cimiano, P., Polleres, A., Corcho, O., Presutti, V. (eds.) The Semantic Web: Research and Applications, ESWC 2012, LNCS, vol. 7295, pp. 545–559. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-30284-8_43

  11. Kazai, G., Kamps, J., Milic-Frayling, N.: The face of quality in crowdsourcing relevance labels: Demographics, personality and labeling accuracy (2012)

    Google Scholar 

  12. Khattak, F.K., Salleb-Aouissi, A.: Quality control of crowd labeling through expert evaluation. In: Proceedings of the NIPS 2nd Workshop on Computational Social Science and the Wisdom of Crowds, vol. 2, p. 5 (2011)

    Google Scholar 

  13. Martin, A.: About conflict in the theory of belief functions. In: Denoeux, T., Masson, MH. (eds.) Belief Functions: Theory and Applications. Advances in Intelligent and Soft Computing, vol. 164, pp. 161–168. Springer, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29461-7_19

  14. Martin, A.: Conflict Management in Information Fusion with Belief Functions. In: Bossé, É., Rogova, G. (eds.) Information Quality in Information Fusion and Decision Making. Information Fusion and Data Science, pp. 79–97. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-03643-0_4

  15. Martin, A., Jousselme, A.L., Osswald, C.: Conflict measure for the discounting operation on belief functions. In: Information Fusion, 2008 11th International Conference on, pp. 1–8. IEEE (2008)

    Google Scholar 

  16. Ross, J., Zaldivar, A., Irani, L., Tomlinson, B.: Who are the turkers? worker demographics in amazon mechanical turk. Department of Informatics, University of California, Irvine, USA, Technical Report (2009)

    Google Scholar 

  17. Roy, S.B., Lykourentzou, I., Thirumuruganathan, S., Amer-Yahia, S., Das, G.: Crowds, not drones: modeling human factors in interactive crowdsourcing. In: DBCrowd 2013-VLDB Workshop on Databases and Crowdsourcing, pp. 39–42. CEUR-WS (2013)

    Google Scholar 

  18. Shafer, G.: A mathematical theory of evidence, vol. 42. Princeton University Press, Princeton (1976)

    Google Scholar 

  19. Thierry, C., Dubois, J.C., Le Gall, Y., Martin, A.: Modeling uncertainty and inaccuracy on data from crowdsourcing plateforms: Monitor. In: Proceedings of the 31st International Conference on Tools with Artificial Intelligence (2019)

    Google Scholar 

  20. Thierry, C., Martin, A., Dubois, J.C., Le Gall, Y.: Estimation of the qualification and behavior of a contributor and aggregation of his answers in a crowdsourcing context. Expert Syst. Appl. 216, 119496 (2023)

    Article  Google Scholar 

  21. Thierry, C., Martin, A., Le Gall, Y., Dubois, J.C.: Modeling evolutionary responses in crowdsourcing MCQ using belief function theory. Procedia Comput. Sci. 225, 2575–2584 (2023)

    Article  Google Scholar 

  22. Yongxin, T., Caleb, C.C., Chen, J.Z., Yatao, L., Lei, C.: Crowdcleaner: data cleaning for multi-version data on the web via crowdsourcing. In: 2014 IEEE 30th International Conference Data Engineering (ICDE) (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constance Thierry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Thierry, C., Gross-Amblard, D., Le Gall, Y., Dubois, JC. (2024). Automated Hierarchical Conflict Reduction for Crowdsourced Annotation Tasks Using Belief Functions. In: Bi, Y., Jousselme, AL., Denoeux, T. (eds) Belief Functions: Theory and Applications. BELIEF 2024. Lecture Notes in Computer Science(), vol 14909. Springer, Cham. https://doi.org/10.1007/978-3-031-67977-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-67977-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-67976-6

  • Online ISBN: 978-3-031-67977-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics