ODR3DNet: Omni-Dimension Dynamic Residual 3D Net for Pulmonary Nodule Detection | SpringerLink
Skip to main content

ODR3DNet: Omni-Dimension Dynamic Residual 3D Net for Pulmonary Nodule Detection

  • Conference paper
  • First Online:
Trustworthy Artificial Intelligence for Healthcare (TAI4H 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14812))

  • 267 Accesses

Abstract

Lung cancer remains a potentially fatal global health concern, underscoring the criticality of enhancing the precision of early lung cancer diagnosis to ameliorate patient prognoses. Over the past years, the ascent of deep learning (DL) has ushered in a formidable arsenal, with DL-based computer-aided systems orchestrating remarkable strides in the realm of pulmonary nodule detection (PND). This investigation introduces a pioneering approach, namely the Omni-dimension Dynamic Residual 3D Net (ODR3DNet), meticulously tailored for PND by harnessing the prowess of full-dimensional dynamic 3D convolution. The core thrust behind ODR3DNet lies in its ability to surmount the constraints bedeviling conventional 3D CNNs. These limitations encompass a lack of flexibility and a constrained feature extraction capacity. When juxtaposed with the conventional PND algorithms that dominate the field, our proposed algorithm unfurls its prowess by securing an impressively high CPM score of 0.885, thus establishing its resounding superiority. What’s more, our exploration delves deeper as ablation experiments are harnessed to substantiate the manifold contributions of OD3D towards bolstering performance, all while offering an optimal configuration for seamless integration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 13727
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 7149
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, Y., Dai, X., Liu, M., Chen, D., Yuan, L., Liu, Z.: Dynamic convolution: attention over convolution kernels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11030–11039 (2020)

    Google Scholar 

  2. Ding, J., Li, A., Hu, Z., Wang, L.: Accurate pulmonary nodule detection in computed tomography images using deep convolutional neural networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 559–567. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_64

    Chapter  Google Scholar 

  3. George, J., Skaria, S., Varun, V., et al.: Using yolo based deep learning network for real time detection and localization of lung nodules from low dose CT scans. In: Medical Imaging 2018: Computer-Aided Diagnosis, vol. 10575, pp. 347–355. SPIE (2018)

    Google Scholar 

  4. Gu, J., Tian, Z., Qi, Y.: Pulmonary nodules detection based on deformable convolution. IEEE Access 8, 16302–16309 (2020). https://api.semanticscholar.org/CorpusID:210972598

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  6. Li, C., Zhou, A., Yao, A.: Omni-dimensional dynamic convolution. arXiv preprint arXiv:2209.07947 (2022)

  7. Li, Y., Fan, Y.: Deepseed: 3D squeeze-and-excitation encoder-decoder convolutional neural networks for pulmonary nodule detection. In: 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), pp. 1866–1869. IEEE (2020)

    Google Scholar 

  8. Lin, T.Y., Dollár, P., Girshick, R.B., He, K., Hariharan, B., Belongie, S.J.: Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 936–944 (2016). https://api.semanticscholar.org/CorpusID:10716717

  9. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  10. Mei, J., Cheng, M.M., Xu, G., Wan, L.R., Zhang, H.: Sanet: a slice-aware network for pulmonary nodule detection. IEEE Trans. Pattern Anal. Mach. Intell. 44(8), 4374–4387 (2021)

    Google Scholar 

  11. Nguyen, C.C., Tran, G.S., Nguyen, V.T., Burie, J.C., Nghiem, T.P.: Pulmonary nodule detection based on faster R-CNN with adaptive anchor box. IEEE Access 9, 154740–154751 (2021). https://api.semanticscholar.org/CorpusID:244419436

  12. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  13. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  14. Setio, A.A.A., et al.: Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans. Med. Imaging 35(5), 1160–1169 (2016)

    Article  Google Scholar 

  15. Setio, A.A.A., et al.: Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: the luna16 challenge. Med. Image Anal. 42, 1–13 (2017)

    Article  Google Scholar 

  16. Yang, B., Bender, G., Le, Q.V., Ngiam, J.: Condconv: conditionally parameterized convolutions for efficient inference. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  17. Zhang, H., Zhang, H.: Lungseek: 3D selective kernel residual network for pulmonary nodule diagnosis. Vis. Comput. 39, 679 – 692 (2022). https://api.semanticscholar.org/CorpusID:246359391

  18. Zhang, M., Kong, Z., Zhu, W., Yan, F., Xie, C.: Pulmonary nodule detection based on 3d feature pyramid network with incorporated squeeze-and-excitation-attention mechanism. Concurr. Comput. Pract. Exp. 35 (2021). https://api.semanticscholar.org/CorpusID:233638919

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Tie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Tie, Y., Zhang, D., Zhang, Z., Qi, L. (2024). ODR3DNet: Omni-Dimension Dynamic Residual 3D Net for Pulmonary Nodule Detection. In: Chen, H., Zhou, Y., Xu, D., Vardhanabhuti, V.V. (eds) Trustworthy Artificial Intelligence for Healthcare. TAI4H 2024. Lecture Notes in Computer Science, vol 14812. Springer, Cham. https://doi.org/10.1007/978-3-031-67751-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-67751-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-67750-2

  • Online ISBN: 978-3-031-67751-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics