A Data-Driven Design Approach for Multi-scale Green Infrastructure Design: Integrating Landscape Connectivity and Phytoremediation in the Piedmont Region (IT) | SpringerLink
Skip to main content

A Data-Driven Design Approach for Multi-scale Green Infrastructure Design: Integrating Landscape Connectivity and Phytoremediation in the Piedmont Region (IT)

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2024 Workshops (ICCSA 2024)

Abstract

Rapid urbanization, intensive agriculture, and industrial activities in Europe have led to escalating landscape fragmentation and environmental pollution, posing threats to biodiversity, and causing degradation of vital natural resources over time. In response, the imperative for sustainable green infrastructure (GI) development has intensified to effectively mitigate the adverse impacts of human activities on landscapes and enhance their capacity to support life. However, despite the recognized importance of GI in addressing environmental challenges, its design and implementation remains a complex challenge, due to the difficulty to fully grasp and assess how GI provisions link to benefits at multiple scales, and how the latter can be maximized.

This paper introduces a data-driven approach for the integrated and multi-scalar design of GI, leveraging phytoremediation techniques to remediate polluted sites. By employing phytoremediation techniques at the local scale, this approach aims at enhancing local soil and water conditions while simultaneously reinforcing connectivity in regional ecological networks. The proposed approach initiates with a Morphological Spatial Pattern Analysis (MSPA) and Network Connectivity Analysis (MCA) to identify potential ecological sources and assess the impact of designed green corridors on the performance of existing regional networks. Subsequently, mapping and characterization of polluted sites are carried out in a GIS environment to identify strategic areas for the development of GI features at the local scale. This research makes use of the Novara area in the Piedmont region (IT) to test the above mentioned approach. Initial results show that quantifying and integrating landscape connectivity with the transformation of polluted sites is a viable way to optimize GI design allowing strategic design interventions on the regional and local scale. The proposed data-driven design approach offers a holistic solution to the challenges of urbanization and landscape fragmentation by providing a framework that enhances ecological resilience, optimizes resource allocation, and contributes to the creation of multifunctional landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14871
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 18589
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://geodacenter.github.io

  2. 2.

    https://www.qgis.org

  3. 3.

    https://forest.jrc.ec.europa.eu/en/activities/lpa/gtb/

  4. 4.

    http://www.conefor.org

References

  1. Paya Perez, A., Rodriguez Eugeniom, N.: Status of local soil contamination in Europe: revision of the indicator “progress in the management of contaminated sites in Europe”, publication office of the Europeans union. Luxembourg (2018). https://doi.org/10.2760/093804

    Article  Google Scholar 

  2. Panagos, P., Van Liedekerke, M., Yigini, Y., Montanarella, L.: Contaminated sites in Europe: review of the current situation based on data collected through a European network. J. Environ. Public Health (2013). https://doi.org/10.1155/2013/158764

    Article  Google Scholar 

  3. Zhao, S., Yue, B.: Nature-based solutions: establishing a comprehensive framework for addressing urban waterlogging management. Integr. Environ. Assess. Manag. 19, 1414–1421 (2023). https://doi.org/10.1002/ieam.4786

    Article  Google Scholar 

  4. Randelović, A., Figueras, A., Seidelin, F., Briggs, L., Stanić, F.: Nature-based Solutions (NBS) at work and monitoring their performance – the innovative research case of the EU-funded project euPOLIS. In: EGU General Assembly, Vienna, Austria, 24–28 2023, EGU23–17063 (2023) https://doi.org/10.5194/egusphere-egu23-17063

  5. Wirth, P., Chang, J., Syrbe, R.U., et al.: Green infrastructure: a planning concept for the urban transformation of former coal-mining cities. Int J Coal Sci Technol 5, 78–91 (2018). https://doi.org/10.1007/s40789-018-0200-y

    Article  Google Scholar 

  6. Benedict, M.A., McMahon, E.T.: Green infrastructure: smart conservation for the 21st century. 20(3), 12–17 (2002)

    Google Scholar 

  7. Firehock, K., Walker, R.A: Strategic Green Infrastructure Planning: A Multi-Scale Approach. (2015) https://doi.org/10.5822/978-1-61091-693-6

  8. Pozoukidou, G.: Designing a green infrastructure network for metropolitan areas: a spatial planning approach. Euro-Mediterr J Environ Integr 5, 40 (2020). https://doi.org/10.1007/s41207-020-00178-8

    Article  Google Scholar 

  9. Maryati, S., Humaira, A.N.S.: Implementation of green infrastructure concept in Citarum Watershed. In: AIP Conference Proceedings, 1818 (1), 020031 (2017) https://doi.org/10.1063/1.4976895

  10. Sitzenfrei, R., Kleidorfer, M., Bach, P.M., Bacchin, T.K.: Green infrastructures for urban water system: balance between cities and nature. Water 12, 1456 (2020). https://doi.org/10.3390/w12051456

    Article  Google Scholar 

  11. Snäll, T., Lehtomäki, J., Arponen, A., et al.: Green infrastructure design based on spatial conservation prioritization and modeling of biodiversity features and ecosystem services. Environ. Manage. 57, 251–256 (2016). https://doi.org/10.1007/s00267-015-0613-y

    Article  Google Scholar 

  12. van Ameijde, J.: Data-driven urban design: conceptual and methodological constructs for people-oriented public spaces. In: Morel, P., Bier, H. (eds.) Disruptive Technologies: The convergence of new paradigms in architecture. Springer Series initiative in Adaptive Environments. Springer, Cham (2023)

    Google Scholar 

  13. NY Times. https://www.nytimes.com/2012/03/04/business/ibm-takes-smarter-cities-concept-to-rio-de-janeiro.html. Accessed 29 Apr 2024

  14. European Commission: Forging a Climate-Resilient Europe. The new EU Strategy on Adaptation to Climate Change (2021)

    Google Scholar 

  15. Forman, R.T.T., Godron, M.: Landscape ecology. Wiley (1986)

    Google Scholar 

  16. Loreau, M., Mouquet, N., Holt, R.D.: Meta-ecosystems: a theoretical framework for a spatial ecosystem ecology. Ecol. Lett. 6(8), 673–679 (2003). https://doi.org/10.1046/j.1461-0248.2003.00483.x

    Article  Google Scholar 

  17. Cannatella D., Nijhuis, S.: Assessing urban landscape composition and configuration in the pearl river delta (China) over time. J. Digit. Landscape Architect. 5, 111–121 (2020). https://doi.org/10.14627/537690012

  18. Egerer, M., Anderson, E.G.: Social-ecological connectivity to understand ecosystem service provision across networks in urban landscapes. Land 9(12), 530 (2020). https://doi.org/10.3390/land9120530

    Article  Google Scholar 

  19. Taylor, P.D., Fahrig, L., Henein, K., Merriam, G.: Connectivity is a vital element of landscape structure. Oikos 68(3), 571 (1993). https://doi.org/10.2307/3544927

    Article  Google Scholar 

  20. Clergeau, P., Burel, F.: The role of spatio-temporal patch connectivity at the landscape level: an example in a bird distribution. Landscape Urban Plann. 38(1–2), 37–43 (1997). https://doi.org/10.1016/s0169-2046(97)00017-0

    Article  Google Scholar 

  21. With, K.A.: The application of neutral landscape models in conservation biology. Conserv. Biol. 11(5), 1069–1080 (1997). https://doi.org/10.1046/j.1523-1739.1997.96210.x

    Article  Google Scholar 

  22. Collinge, S.K.: Spatial arrangement of habitat patches and corridors: clues from ecological field experiments. Landscape Urban Plann. 42(2–4), 157–168 (1998). https://doi.org/10.1016/s0169-2046(98)00085-1

    Article  Google Scholar 

  23. Raison, R.J., Brown, A.G., Flinn, D.W.: Criteria and Indicators for Sustainable Forest Management. CABI (2001)

    Google Scholar 

  24. Crist, M.R., Wilmer, B., Aplet, G.H.: Assessing the value of roadless areas in a conservation reserve strategy: biodiversity and landscape connectivity in the northern rockies. J. Appl. Ecol. 42(1), 181–191 (2005). https://doi.org/10.1111/j.1365-2664.2005.00996.x

    Article  Google Scholar 

  25. Balestrini, R., Lumini E., Borriello, R., Bianciotto, V.: Plant-Soil Biota Interactions, Istituto per la Protezione Sostenibile delle Piante, UOS Torino, Viale Mattioli, 10125 Torino, Italy (chapter 11 in Soil Microbiology, Ecology and Biochemistry 4th Edition by Eldor Paul (Editor) (2013)

    Google Scholar 

  26. United Nations Environment Programme:. Making Peace with Nature: A scientific blueprint to tackle the climate, biodiversity and pollution emergencies. Nairobi. https://www.unep.org/resources/making-peace-nature ISBN: 978-92-807-3837-7 Job No: DEW/2335/NA, Report Leads: Ivar A. Baste (GEO, IPBES; Norwegian Environment Agency, Norway) and Robert T. Watson (IPCC, IPBES; UEA, UK) (2021)

  27. Grotenhuis, T., van Vianen, L., Wijnja, A., Bruijnes, J.: Phytoremediation as Accelerator of Transformation towards Regenerative Cities, A Nature based solution for environmental pollution Report number 383 Wageningen,. ISBN 978–94–6447–465–7 https://doi.org/10.18174/579598(2022)

  28. Gustafson, Porter + Bowman. https://www.gp-b.com/cultuurpark-westergasfabriek. Accessed 07 May 2024

  29. Gerhardt, K.E., Huang, X.D., Glick, B.R., Greenberg, B.M.: Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges. 176, 20-30 (2009)

    Google Scholar 

  30. Singer, A.: The chemical ecology of pollutants biodegradation. In: Mackova, M., Dowling, D., Macek, T. (eds.) Phytoremediation and Rhizoremediation: Theoretical Background, pp. 5–21. Springer, Dordrecht (2006)

    Chapter  Google Scholar 

  31. Van Aken, B., Lafferty Doty, S.: Transgenic plants and associated bacteria for phytoremediation of chlorinated compounds. Biotechnol. Genet. Eng. Rev. 26(1), 43–64 (2009). https://doi.org/10.5661/bger-26-43

    Article  Google Scholar 

  32. Dietz, A., Schnoor, J.: Advances in phytoremediation. Environ. Health Perspect. 109, 163–168 (2001)

    Google Scholar 

  33. Doty, S.L., et al.: Enhanced phytoremediation of volatile environmental pollutants with transgenic trees. Proc Natl Acad Sci USA 104, 16816-16821 (2007)

    Google Scholar 

  34. Latz und Partner. https://www.latzundpartner.de/en/projekte/postindustrielle-landschaften/landschaftspark-duisburg-nord-de/. Accessed 07 May 2024

  35. Delva landscape. https://delva.la/projecten/de-ceuvel/ Accessed 07 May 2024

  36. OECD. (2023). National Accounts regional main aggregates : Value added by industry. © OECD. http://dati.istat.it/Index.aspx?QueryId=11479&lang=en

  37. Tscharntke, T., Klein, A., Kruess, A., Steffan-Dewenter, I., Thies, C.: Landscape perspectives on agricultural intensification and biodiversity – ecosystem service management. Ecol. Lett. 8(8), 857–874 (2005). https://doi.org/10.1111/j.1461-0248.2005.00782.x

    Article  Google Scholar 

  38. Grossauer, F., Stoeglehner, G.: Bioeconomy—spatial requirements for sustainable development. Sustainability 12(5), 1877 (2020). https://doi.org/10.3390/su12051877

    Article  Google Scholar 

  39. Soille, P., Vogt, P.: Morphological segmentation of binary patterns. Pattern Recogn. Lett. 30(4), 456–459 (2009). https://doi.org/10.1016/j.patrec.2008.10.015

    Article  Google Scholar 

  40. Jin, L., Xu, Q., Yi, J., Zhong, X.: Integrating CVOR-GWLR-Circuit model into construction of ecological security pattern in Yunnan Province, China. Environ. Sci. Pollut. Res. Int. 29(54), 81520–81545 (2022). https://doi.org/10.1007/s11356-022-21421-5

    Article  Google Scholar 

  41. Mei, Y., Sun, Y., Wang, Q., Liu, Q., Zhang, L.: Construction of green space ecological network in Jinan city based on MSPA and MCR model. Pol. J. Environ. Stud. 31(4), 3701–3711 (2022). https://doi.org/10.15244/pjoes/146344

    Article  Google Scholar 

  42. Bunn, A.G., Urban, D.L., Keitt, T.H.: Landscape connectivity: a conservation application of graph theory. J. Environ. Manag. 59, 265–278 (2000)

    Article  Google Scholar 

  43. Ricotta, C., Stanisci, A., Avena, G.C., Blasi, C.: Quantifying the network connectivity of landscape mosaics: a graph-theoretical approach. Commun. Ecol. 1, 89–94 (2000)

    Article  Google Scholar 

  44. Urban, D., Keitt, T.: Landscape connectivity: a graphtheoretic perspective. Ecology 82, 1205–1218 (2001)

    Article  Google Scholar 

  45. Saura, S., Pascual-Hortal, L.: A new habitat availability index to integrate connectivity in landscape conservation planning: comparison with existing indices and application to a case study. Landscape Urban Plann. 83(2–3), 91–103 (2007). https://doi.org/10.1016/j.landurbplan.2007.03.005

    Article  Google Scholar 

  46. Hagler, J.R., Mueller, S., Teuber, L.R., Machtley, S.A., Van Deynze, A.: Foraging range of honey bees, Apis mellifera, in alfalfa seed production fields. J. Insect Sci. 11(144), 1–12 (2011). https://doi.org/10.1673/031.011.14401

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Cannatella .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cannatella, D., van der Waal, M., Rizzetto, F. (2024). A Data-Driven Design Approach for Multi-scale Green Infrastructure Design: Integrating Landscape Connectivity and Phytoremediation in the Piedmont Region (IT). In: Gervasi, O., Murgante, B., Garau, C., Taniar, D., C. Rocha, A.M.A., Faginas Lago, M.N. (eds) Computational Science and Its Applications – ICCSA 2024 Workshops. ICCSA 2024. Lecture Notes in Computer Science, vol 14820. Springer, Cham. https://doi.org/10.1007/978-3-031-65285-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-65285-1_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-65284-4

  • Online ISBN: 978-3-031-65285-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics