Ethical Aspects of Analyzing Kazakh Political Discourse | SpringerLink
Skip to main content

Ethical Aspects of Analyzing Kazakh Political Discourse

  • Conference paper
  • First Online:
Computational Science and Its Applications – ICCSA 2024 Workshops (ICCSA 2024)

Abstract

This article delves into the analysis of hotbeds points in political discourse, examining the diverse forms they can take. The primary focus revolves around the officiality and openness of these discourse sources. When addressing open sources, particularly instances where candidates in various elections openly and officially express their viewpoints, the article asserts that there is no violation of legal or ethical norms in the scientific analysis of texts, videos, or audio information for research purposes. The article emphasizes transparency, ethical considerations, and adherence to legal regulations in the context of studying and analyzing political discourse, particularly within the dynamic landscape of social networks. The guiding principles outlined here aim to ensure an ethical and responsible approach to the analysis of Kazakhstani political discourse in social media platforms. (funding by grant № AP19679847).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
JPY 3498
Price includes VAT (Japan)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
JPY 14871
Price includes VAT (Japan)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
JPY 18589
Price includes VAT (Japan)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bekmanova, G., Yelibayeva, G., Aubakirova, S., Dyussupova, N., Sharipbay, A., Nyazova, R.: Methods for analyzing polarity of the Kazakh texts related to the terrorist threats. In: International Conference on Computational Science and Its Applications. ICCSA 2019, pp. 717–730 (2019). https://doi.org/10.1007/978-3-030-24289-3_53

  2. Yergesh, B., Bekmanova, G., Sharipbay, A.: Sentiment analysis of Kazakh text and their polarity. Web Intell. 17(1), 9–15 (2019). https://doi.org/10.3233/WEB-190396

  3. Bekmanova, G., Yergesh, B., Sharipbay, A.: Sentiment analysis model based on the word structural representation. In: Mahmud, M., Kaiser, M.S., Vassanelli, S., Dai, Q., Zhong, N. (eds.) Brain Informatics. LNCS (LNAI), vol. 12960, pp. 170–178. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86993-9_16

    Chapter  Google Scholar 

  4. Bekmanova, G., Yergesh, B., Sharipbay, A., Mukanova, A.: Emotional speech recognition method based on word transcription. Sensors 22(5) (2022). https://doi.org/10.3390/s22051937

  5. Yergesh, B., Bekmanova, G., Sharipbay, A.: Sentiment analysis on the hotel reviews in the Kazakh language. In: Proceedings of the 2nd International Conference on Computer Science and Engineering, UBMK 2017, pp. 790–794 (2017). https://doi.org/10.1109/UBMK.2017.8093531 (2017)

  6. Yergesh, B., Bekmanova, G., Sharipbay, A., Yergesh, M.: Ontology-based sentiment analysis of Kazakh sentences. In: Gervasi, O., et al. (eds.) Computational Science and Its Applications – ICCSA 2017. LNCS, vol. 10406, pp. 669–677. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62398-6_47

    Chapter  Google Scholar 

  7. Zhetkenbay, L., Sharipbay, A., Bekmanova, G., Kamanur, U.: Ontological modeling of morphological rules for the adjectives in Kazakh and Turkish languages. J. Theor. Appl. Inf. Technol. 91(2), 257–263 (2016)

    Google Scholar 

  8. Bekmanova, G., et al.: A uniform morphological analyzer for the Kazakh and Turkish languages. In: CEUR Workshop Proceedings, pp. 20–30 (2017)

    Google Scholar 

  9. Zappavigna, M.: Social media quotation practices and ambient affiliation: weaponising ironic quotation for humorous ridicule in political discourse. J. Pragmatics 191, 98–112 (2022). https://doi.org/10.1016/j.pragma.2021.12.003. ISSN 03782166

  10. Sen, A., et al.: Analysis of media bias in policy discourse in India. In: ACM International Conference Proceeding Series. 4th ACM SIGCAS/SIGCHI Conference on Computing and Sustainable Societies, COMPASS 2022, vol. Par F180472, pp. 57–77 (2022). https://doi.org/10.1145/3530190.3534798. ISBN 978-145039347-8

  11. Papakyriakopoulos, O., Tessono, C., Narayanan, A., Kshirsagar, M.: How algorithms shape the distribution of political advertising: case studies of Facebook, Google, and TikTok. In: AIES 2022 - Proceedings of the 2022 AAAI/ACM Conference on AI, Ethics, and Society. 5th AAAI/ACM Conference on Artificial Intelligence, Ethics, and Society, AIES 2022, pp. 532–546 (2022). https://doi.org/10.1145/3514094.3534166. ISBN 978-145039247-1

  12. Bollenbacher, J., Loynes, N., Bryden, J.: Does United Kingdom parliamentary attention follow social media posts? EPJ Data Sci. 11(1) (2022). Art. no. 51. https://doi.org/10.1140/epjds/s13688-022-00364-4. ISSN 21931127

  13. Phan, H.T., Nguyen, N.T., Hwang, D.: Aspect-level sentiment analysis: a survey of graph convolutional network methods. Inf. Fusion 91, 149–172 (2023). https://doi.org/10.1016/j.inffus.2022.10.004. ISSN 15662535

  14. Al-Absi, A.A., Kang, D., Al-Absi, M.A.: Sentiment analysis and classification using deep semantic information and contextual knowledge. Comput. Mater. Continua 74(1), 671–691 (2023). https://doi.org/10.32604/cmc.2023.030262. ISSN 15462218

  15. Saranya, S., Usha, G.: A machine learning-based technique with intelligent WordNet lemmatize for Twitter sentiment analysis. Intell. Autom. Soft Comput. 36(1), 339–352 (2023). https://doi.org/10.32604/iasc.2023.031987. ISSN 10798587

  16. Yergesh, B., Kenzhina, L.: Analysis of the users’ emotional state in social networks. In: ACM International Conference Proceeding Series, art. no. 3492654. 7th International Conference on Engineering and MIS, ICEMIS 2021 (2021). https://doi.org/10.1145/3492547.3492654. ISBN 978-145039044-6

  17. Boranbayev, A., Shuitenov, G., Boranbayev, S.: The method of analysis of data from social networks using rapidminer. In: Arai, K., Kapoor, S., Bhatia, R. (eds.) Intelligent Computing. AISC, vol. 1229, pp. 667–673. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52246-9_49. ISSN 21945357. ISBN 978-303052245-2

  18. Sultan, D., Suliman, A., Toktarova, A., Omarov, B., Mamikov, S., Beissenova, G.: Cyberbullying detection and prevention: data mining in social media. In: 11th International Conference on Cloud Computing, Data Science and Engineering, Confluence, pp. 338–342 (2021). Art. no. 9377077. https://doi.org/10.1109/Confluence51648.2021.9377077. ISBN 978-073813160-3

  19. Gulnara, B., Ilyas, Z., Gulnara, Z.: The development of a web application for the automatic analysis of the tonality of texts based on machine learning methods. In: International Conference on Control, Automation and Systems, vol. 2018, art. no. 8571950. 18th International Conference on Control, Automation and Systems, ICCAS 2018 (2018). ISSN 15987833. ISBN 978-899321515-1

    Google Scholar 

  20. Swed, O., Dassanayaka, S., Volchenkov, D.: Keeping it authentic: the social footprint of the trolls’ network. Soc. Netw. Anal. Mining 14 (1) (2024). Art. no. 38

    Google Scholar 

  21. Al-Shboul, O.K., Al-Khawaldeh, N.N., Hamdan, H.J., Alqbailat, N.: Macro and micro analysis of motivational speech acts in Biden’s political speech. Int. J. Soc. Cult. Lang. 12(1), 362–373 (2024)

    Google Scholar 

  22. Santos, A.N., de Souza, G.M., Abdalla, M.M., Ferreira, A., Nogueira, N.J.: Lobbying and environmental crimes: an analysis based on the Brazilian mining sector. Extr. Ind. Soc. 17 (2024). Art. no. 101419

    Google Scholar 

  23. Losen, B.: Uses of scientific discourses and markers in shark attack risk management on Reunion Island. Marine Policy 161, art. no. 106011 (2024)

    Google Scholar 

  24. Sun, Q., Chen, J., Gao, S.: From panic to banter: how do routine government releases and clarifications cause unexpected public opinion crisis—an analysis of public opinion toward a release by Chinese Ministry of Commerce encouraging the storage of necessities. J. Contingencies Crisis Manag. 32 (1) (2024). Art. no. e12530

    Google Scholar 

  25. Lebold, M.: Exploring feminist political economy and feminist critical discourse analysis as methodologies in critical nursing research. J. Adv. Nurs. 80(3), 958–970 (2024)

    Article  Google Scholar 

  26. Igwebuike, E.E., Chimuanya, L.: Self-promotion, ideology and power in the social media posts of Nigerian female political leaders. J. Lang. Polit. 23(1), 67–90 (2024)

    Article  Google Scholar 

  27. Alpermann, B., Malzer, M.: “In Other news”: China’s international media strategy on Xinjiang—CGTN and New China TV on YouTube. Mod. China 50(2), 135–178 (2024)

    Article  Google Scholar 

  28. Hensmans, M.: The multinational as a myth-prince of the global south: writing back an emancipating imaginary to the global north. Organization 31(2), 269–294 (2024)

    Article  Google Scholar 

  29. Hand, I.: If the municipality cannot do It!: Negotiating the Boundary between State and Society in Early republican Turkish cities. J. Urban Hist, 50(2), 289 –306 e 7.1, 20220141 (2024)

    Google Scholar 

  30. Bekmanova, G., Omarbekova, A., Mukanova, A., Zulkhazhav, A., Zakirova, A., Ongarbayev, Ye.: Development of an ontological model of words in public political discourse. In: Proceedings of the 7th International Conference on Education and Multimedia Technology (ICEMT 2023), pp. 362–367. Association for Computing Machinery, New York, NY, USA (2023). https://doi.org/10.1145/3625704.3625720

  31. Sairanbekova, A., Bekmanova, G., Omarbekova, A., Mukanova, A., Zulkhazhav, A.: The use of Python, Owlready, Sparql in processing the words ontological model of public political discourse. Comput. Syst. Commun. Technol. 49, 45–53 (2024). https://doi.org/10.3233/ATDE240007

  32. Sharipbay, A., Niyazova, R., Turebayeva, R.T., Razakhova, B., Zulkhazhav, A., Yelibayeva, G.: Graphematic analysis of Kazakh language text. J. Math. Mech. Comput. Sci. 3(103), 90–102 (2019)

    Google Scholar 

  33. Yelibayeva, G., Mukanova, A., Sharipbay, A., Zulkhazhav, A., Yergesh, B., Bekmanova, G.: Metalanguage and knowledgebase for Kazakh morphology. In: Misra, S., et al. (eds.) Computational Science and Its Applications – ICCSA 2019. LNCS, vol. 11619, pp. 693–706. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24289-3_51

    Chapter  Google Scholar 

  34. Sharipbay, A., Razakhova, A., Mukanova, A., Yergesh, B., Yelibayeva, G.: Syntax parsing model of Kazakh simple sentences. In: DATA 2019: Proceedings of the Second International Conference on Data Science, E-Learning and Information Systems, pp. 1–5 (2019). https://doi.org/10.1145/3368691.3368745

Download references

Funding

This research is funded by the Committee of Science of the Ministry of Science and Higher Education of the Republic of Kazakhstan (grant no. AP19679847).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulmira Bekmanova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bekmanova, G., Yergesh, B., Omarbekova, A., Ongarbayev, Y., Zulkhazhav, A. (2024). Ethical Aspects of Analyzing Kazakh Political Discourse. In: Gervasi, O., Murgante, B., Garau, C., Taniar, D., C. Rocha, A.M.A., Faginas Lago, M.N. (eds) Computational Science and Its Applications – ICCSA 2024 Workshops. ICCSA 2024. Lecture Notes in Computer Science, vol 14819. Springer, Cham. https://doi.org/10.1007/978-3-031-65282-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-65282-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-65281-3

  • Online ISBN: 978-3-031-65282-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics